精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=|x+2|,g(x)=a-|x-4|,若函数f(x)的图象恒在函数g(x)的图象的上方,则实数a的取值范围是(-∞,6).

分析 根据题意得出|x+2|>a-|x-4|,化为a<|x+2|+|x-4|恒成立,求出h(x)=|x+2|+|x-4|的最小值即可得出结论.

解答 解:∵函数f(x)=|x+2|的图象恒在函数g(x)=a-|x-4|的图象的上方,
∴|x+2|>a-|x-4|,
即不等式a<|x+2|+|x-4|恒成立,
令h(x)=|x+2|+|x-4|
由|x+2|+|x-4|≥|(x+2)+(4-x)|=6,
得h(x)min=6,
则实数a的取值范围a<6.
故答案为:(-∞,6).

点评 本题考查了绝对值不等式的性质以及不等式恒成立的问题,解题时应注意运用参数分离和分类讨论的思想,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图:抛物线y2=x与直线x=ty-1交于A,B两点,点B关于x轴的对称点为C,则直线AC在x轴上的截距(  )
A.1B.$\frac{1}{2}$
C.$\frac{1}{4}$D.不是定值,与t的值相关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.运行如图所示的流程图,则输出的结果S是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,如果sinA:sinB:sinC=3:4:5,那么cosA=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在等比数列{an}中,a3,a15是方程x2-6x+8=0的根,则$\frac{{{a_1}{a_{17}}}}{a_9}$的值为(  )
A.$2\sqrt{2}$B.4C.$±2\sqrt{2}$D.±4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在复平面上复数-3-2i,-4+5i,2+i所对应的点分别是A、B、C,则平行四边形ABCD的对角线BD所对应的复数是7-11i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1、F2,焦距为2c(c>0).若抛物线y2=4cx与该双曲线在第一象限的交点为M,当|MF1|=4c时,该双曲线的离心率为1+$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设随机变量X的概率分布表如表,则P(|X-2|=1)=(  )
X1234
P$\frac{1}{6}$$\frac{1}{4}$m$\frac{1}{3}$
A.$\frac{7}{12}$B.$\frac{1}{2}$C.$\frac{5}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1的左焦点,且与长轴垂直的弦的端点坐标为$(-\sqrt{5},±\frac{4}{3})$,,弦长为$\frac{8}{3}$.

查看答案和解析>>

同步练习册答案