精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1,其中k∈R,若函数F(x)=f(x)+g(x)在区间(0,3)上不单调,则k的取值范围为(  )
A、[-4,-2)
B、(-3,-1]
C、(-5,-2]
D、(-5,-2)
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:因F(x)=f(x)+g(x)=x3+(k-1)x2+(k+5)x-1,先求导数:F′(x),因F(x)在区间(0,3)上不单调,得到F′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数的方法得出k,最后再利用导数求出此函数的值域即可;
解答: 解:因F(x)=f(x)+g(x)=x3+(k-1)x2+(k+5)x-1,
F′(x)=3x2+2(k-1)x+(k+5),
因F(x)在区间(0,3)上不单调,
所以F′(x)=0在(0,3)上有实数解,且无重根,
由F′(x)=0得k(2x+1)=-(3x2-2x+5),
∴k=-
3x2-2x+5
2x+1
=-
3
4
[(2x+1)+
9
2x+1
-
10
3
],
令t=2x+1,有t∈(1,7),记h(t)=t+
9
t

则h(t)在(1,3]上单调递减,在[3,7)上单调递增,
所以有h(t)∈[6,10),于是(2x+1)+
9
2x+1
∈[6,10)
得k∈(-5,-2],而当k=-2时有F′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,
所以k∈(-5,-2);
故选:D.
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一圆锥的侧面展开图是一个中心角为直角的扇形,若该圆锥的侧面积为4π,则该圆锥的体积为(  )
A、
15
π
B、
3
C、3π
D、
15
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=log30.3,b=20.2,c=0.30.3,则a,b,c三者的大小关系是(  )
A、c>b>a
B、b>a>c
C、a>b>c
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

过三棱锥高的中点与底面平行的平面把这个三棱锥分为两部分,则这上、下两部分体积之比为(  )
A、1:7B、1:4
C、2:3D、1:8

查看答案和解析>>

科目:高中数学 来源: 题型:

一个平行于棱锥底面的截面与棱锥的底面的面积之比为1:9,则截面把棱锥的高分成两段的长度之比为
(  )
A、
1
9
B、
1
3
C、
1
2
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=min{
x
,|x-2|},其中min{a,b}=
a,a≤b
b,a>b
,若动直线y=m与函数y=f(x)的图象有三个不同的交点,则实数m的取值范围是(  )
A、(0,1)
B、(1,3)
C、[0,1]
D、[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

与函数y=x有相同图象的一个函数是(  )
A、y=
x2
B、y=logaax(a>0,a≠1)
C、y=(
x
2
D、y=
x2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-px+1
(1)若当x=2时,f(x)取得极值,求p的值,并求f(x)的单调区间;
(2)若对任意的x>0,恒有f(x)≤0,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
1
2
CD=1,PD=
2

(Ⅰ)若M为PA中点,求证:AC∥平面MDE;
(Ⅱ)求直线PA与平面PBC所成角的正弦值.

查看答案和解析>>

同步练习册答案