分析 由试验结果知200对0~1之间的均匀随机数x,y,对应区域的面积为1,两个数能与1构成钝角三角形三边的数对(x,y),满足x2+y2<1且x,y都小于1,x+y>1,面积为$\frac{π}{4}$-$\frac{1}{2}$,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等即可估计π的值.
解答 解:由题意,200对都小于l的正实数对(x,y),对应区域的面积为1,
两个数能与1构成钝角三角形三边的数对(x,y),满足x2+y2<1且x,y都小于1,x+y>1,面积为$\frac{π}{4}$-$\frac{1}{2}$,
因为统计两数能与l 构成钝角三角形三边的数对(x,y) 的个数m=56,
所以$\frac{56}{200}$=$\frac{π}{4}$-$\frac{1}{2}$,所以π=$\frac{78}{25}$.
故答案为:$\frac{78}{25}$.
点评 本题考查了随机模拟法求圆周率的问题,也考查了几何概率的应用问题,是综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 25500立方尺 | B. | 34300立方尺 | C. | 46500立方尺 | D. | 48100立方尺 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 广告费x | 2 | 3 | 4 | 5 | 6 |
| 销售额y | 29 | 41 | 50 | 59 | 71 |
| A. | 101.2 | B. | 108.8 | C. | 111.2 | D. | 118.2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com