精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\frac{1}{|x|}$,g(x)=$\frac{x+|x-1|}{2}$,若f(x)<g(x),则实数x的取值范围是(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-2)∪($\frac{1+\sqrt{17}}{4}$,+∞)C.(-2,$\frac{1+\sqrt{17}}{4}$)D.(-∞,-2)∪(1,2)

分析 化简不等式f(x)>g(x),得到一个绝对值不等式,对x>0,和x<0两种情况进行讨论,把求的结果求并集,就是原不等式的解集.

解答 解:f(x)<g(x)
∴$\frac{1}{|x|}$<$\frac{x+|x-1|}{2}$(x≠0),
即$\frac{x+|x-1|}{2}$•|x|>1,
1°当x>1时,原不等式可化为$\frac{x+x-1}{2}•x>1$,
即2x2-x-2>0,解得x>$\frac{1+\sqrt{17}}{4}$或x<$\frac{1-\sqrt{17}}{4}$(舍)
所以不等式的解集为($\frac{1+\sqrt{17}}{4}$,+∞);
2°当x<0时,原不等式可化$\frac{x-(x-1)}{2}•(-x)>1$,
即$-\frac{1}{2}x>1$,则x<-2,
3°若0<x≤1,则原不等式可化$\frac{x-(x-1)}{2}•x$>1,
即$\frac{1}{2}x>1$,解得x>2,此时不等式不成立,
综上,不等式的解集为(-∞,-2)∪($\frac{1+\sqrt{17}}{4}$,+∞).
故选:B.

点评 本题主要考查绝对值不等式的求解,根据绝对值的几何意义,进行分类讨论是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.己知函数f(x)=2cos(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的最小正周期为万,点($\frac{5π}{24}$,0)为它的图象的一个对称中心.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC,a,b,c分别为角A,B,C的对应边,若f(-$\frac{A}{2}$)=$\sqrt{2}$,a=3,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知幂函数y=f(x)的图象过点$(3,\frac{1}{3})$,则${log_{\frac{1}{2}}}f(2)$的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=1nx,g(x)=x2-ax(x∈R)
(1)求曲线y=f(x)于点(1,f(1)的切线方程
(2)a=3时,求函数F(x)=f(x)+g(x)单调区间
(3)设an=1+$\frac{1}{n}$(n∈N+),求证:3(a1+…an)-a12-a22…an2<1n(n+1)+2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:在△ABC中,若A>B,则$\frac{co{s}^{2}B}{co{s}^{2}A}$>1;命题q:?x∈(0,+∞),$\frac{1}{{x}^{2}}$+$\frac{1}{x}$≥2,在命题(1)p∧q;(2)p∨q;(3)(¬p)∨q;(4)p∧(¬q)中,真命题是(  )
A.(1)(3)B.(2)(4)C.(1)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).
(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x),g(x)满足关系g(x)=f(x)•f(x+a),其中a是常数.
(1)若f(x)=cosx+sinx,且a=$\frac{π}{2}$,求g(x)的解析式,并写出g(x)的递增区间;
(2)设f(x)=2x+$\frac{1}{{2}^{x}}$,若g(x)的最小值为6,求常数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,在直角梯形PBCD中,DC∥PB,A为PB上一点,且ABCD为正方形,AC、BD相交于点E,沿AD将△PAD折起,使平面PAD⊥平面ABCD,连接PB、PC得四棱锥P-ABCD,如图2所示,F是PC的中点,G为AC上一动点.

(1)求证:BD⊥FG;
(2)若点G为线段EC中点,证明:FG∥平面PBD;
(3)若PA=AB=2,求三棱锥B-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案