精英家教网 > 高中数学 > 题目详情
4.已知幂函数y=f(x)的图象过点$(3,\frac{1}{3})$,则${log_{\frac{1}{2}}}f(2)$的值为1.

分析 利用待定系数法求出f(x)的表达式即可.

解答 解:设f(x)=xα
则f(3)=3α=$\frac{1}{3}$,解得α=-1,
则f(x)=x-1,f(2)=$\frac{1}{2}$,
则log${\;}_{\frac{1}{2}}$f(2)=log${\;}_{\frac{1}{2}}$$\frac{1}{2}$=1,
故答案为:1;

点评 本题主要考查函数值的计算以及幂函数解析式的求解,利用待定系数法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设某城市居民私家车平均每辆车每月汽油费用为随机变量ξ(单位为:元),经统计得ξ~N(520,14400),从该城市私家车中随机选取容量为l0000的样本,其中每月汽油费用在(400,640)之间的私家车估计有6826辆.(附:若ξ~N(μ,σ2),则P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544,P(μ-3σ<ξμ+3σ)=0.9974)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设Sn为公差不为零的等差数列{an}的前n项和,若S5=7a4,则$\frac{{3{S_7}}}{a_3}$=(  )
A.15B.17C.19D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和Tn满足an+1=2Tn+6,且a1=6.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}}$}的前n项和Sn
(3)证明:$\frac{1}{3•{S}_{1}}$+$\frac{1}{{3}^{2}•{S}_{2}}$+…$\frac{1}{{3}^{n}•{S}_{n}}$<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,若$(\sqrt{2}c-b)cosA=acosB$,则A=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.以点(2,-1)为圆心且与直线3x+4y-7=0相切的圆的标准方程是(x-2)2+(y+1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)的一条渐近线方程为2x+3y=0,则双曲线的离心率是$\frac{\sqrt{13}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\frac{1}{|x|}$,g(x)=$\frac{x+|x-1|}{2}$,若f(x)<g(x),则实数x的取值范围是(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-2)∪($\frac{1+\sqrt{17}}{4}$,+∞)C.(-2,$\frac{1+\sqrt{17}}{4}$)D.(-∞,-2)∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设F1,F2是曲线$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>0,n>0)的两个焦点,曲线上一点与F1,F2构成的三角形的周长是16,曲线上的点到F1的最小距离为2,则n=4或5.

查看答案和解析>>

同步练习册答案