精英家教网 > 高中数学 > 题目详情
16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)的一条渐近线方程为2x+3y=0,则双曲线的离心率是$\frac{\sqrt{13}}{3}$.

分析 由双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)的一条渐近线方程为2x+3y=0,知a=3k,b=2k,c=$\sqrt{13}$k,由此能求出双曲线的离心率.

解答 解:因为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)的一条渐近线方程为2x+3y=0,
∴a=3k,b=2k,∴c=$\sqrt{13}$k,
∴此双曲线的离心率e=$\frac{c}{a}$=$\frac{\sqrt{13}}{3}$.
故答案为:$\frac{\sqrt{13}}{3}$.

点评 本题考查双曲线的离心率的求法,解题时要认真审题,注意等价转化思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若实数x,y满足约束条件$\left\{\begin{array}{l}x+y≤4\\ x-2y-4≤0\\ x≥1\end{array}\right.$,则点P(x,y)落在圆(x-1)2+(y-3)2=4内的概率为(  )
A.$\frac{π}{27}$B.$\frac{2π}{27}$C.$\frac{π}{9}$D.$\frac{2π}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若随机变量X~N(1,4),P(x≤0)=m,则P(0<x<2)1-2m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知幂函数y=f(x)的图象过点$(3,\frac{1}{3})$,则${log_{\frac{1}{2}}}f(2)$的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,点P在圆O的直径AB的延长线上,且PB=OB=3,PC切圆O于C点,CD⊥AB于D点,则CD的长为$\frac{{3\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=1nx,g(x)=x2-ax(x∈R)
(1)求曲线y=f(x)于点(1,f(1)的切线方程
(2)a=3时,求函数F(x)=f(x)+g(x)单调区间
(3)设an=1+$\frac{1}{n}$(n∈N+),求证:3(a1+…an)-a12-a22…an2<1n(n+1)+2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:在△ABC中,若A>B,则$\frac{co{s}^{2}B}{co{s}^{2}A}$>1;命题q:?x∈(0,+∞),$\frac{1}{{x}^{2}}$+$\frac{1}{x}$≥2,在命题(1)p∧q;(2)p∨q;(3)(¬p)∨q;(4)p∧(¬q)中,真命题是(  )
A.(1)(3)B.(2)(4)C.(1)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x),g(x)满足关系g(x)=f(x)•f(x+a),其中a是常数.
(1)若f(x)=cosx+sinx,且a=$\frac{π}{2}$,求g(x)的解析式,并写出g(x)的递增区间;
(2)设f(x)=2x+$\frac{1}{{2}^{x}}$,若g(x)的最小值为6,求常数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.$\frac{(9+2π)\sqrt{3}}{6}$B.$\frac{(8+2π)\sqrt{3}}{6}$C.$\frac{(6+π)\sqrt{3}}{6}$D.$\frac{(8+π)\sqrt{3}}{6}$

查看答案和解析>>

同步练习册答案