精英家教网 > 高中数学 > 题目详情
14.设某城市居民私家车平均每辆车每月汽油费用为随机变量ξ(单位为:元),经统计得ξ~N(520,14400),从该城市私家车中随机选取容量为l0000的样本,其中每月汽油费用在(400,640)之间的私家车估计有6826辆.(附:若ξ~N(μ,σ2),则P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544,P(μ-3σ<ξμ+3σ)=0.9974)

分析 Q确定P(400,640)=P(520-120,520+120)=0.6826,即可得出结论.

解答 解:ξ~N(520,14400),则μ=520,σ=120,
所以P(400,640)=P(520-120,520+120)=0.6826,
所以每月汽油费用在(400,640)之间的私家车估计有l0000×0.6826=6826.
故答案为:6826.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.将直角边长为1的等腰直角△ABC沿x轴正方向滚动,某时刻A与坐标原点重合(如图),设顶点A(x,y)的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:
①f(x)的值域为[0,$\sqrt{2}$];
②f(x)是周期函数且周期为1+$\sqrt{2}$;
③f(x)的一个减区间是[$\sqrt{2}$,$\sqrt{2}$+2];
④${∫}_{0}^{\sqrt{2}+1}$f(x)dx=$\frac{3π}{4}$+$\frac{1}{2}$;
⑤f(1)<f($\sqrt{2}$+1)<f(100+51$\sqrt{2}$).
其中正确命题的序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了n份,统计结果如图表所示.
组号年龄
分组
答对全卷
的人数
答对全卷的人数
占本组的概率
1[20,30)28b
2[30,40)270.9
3[40,50)50.5
4[50,60]a0.4
(1)分别求出a,b,c,n的值;
(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X为第3组被授予“环保之星”的人数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在“中国好声音”的一场海选中,有5位歌手参与评选,有3位导师参与挑选歌手,被导师选中的歌手将归入相应的导师一组,如果一位歌手同时被多位导师选中,则由歌手自己确定归入哪个导师组,如果3位导师都没有选中某位歌手,则该歌手被淘汰,若限定一位导师最多选中3位歌手,那么本场海选结束后,这5位歌手所有可能的结果有210种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设l,m是两条不同的直线,a是一个平面,则下列说法正确的是(  )
A.若l⊥m,m?,则l⊥aB.若l⊥a,l∥m,则m⊥aC.若l∥a,m?a,则l∥mD.若l∥a,m∥a,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P的直角坐标是(x,y).以平面直角坐标系的原点为极坐标的极点,x轴的正半轴为极轴,建立极坐标系.设点P的极坐标是(ρ,θ),点Q的极坐标是(ρ,θ+θ0),其中θ0是常数.设点Q的平面直角坐标是(m,n).
(I)用x,y,θ0表示m,n;
(Ⅱ)若m,n满足mn=1,且θ0=$\frac{π}{4}$,求点P的直角坐标(x,y)满足的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数x,y满足约束条件$\left\{\begin{array}{l}x+y≤4\\ x-2y-4≤0\\ x≥1\end{array}\right.$,则点P(x,y)落在圆(x-1)2+(y-3)2=4内的概率为(  )
A.$\frac{π}{27}$B.$\frac{2π}{27}$C.$\frac{π}{9}$D.$\frac{2π}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.己知函数f(x)=2cos(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的最小正周期为万,点($\frac{5π}{24}$,0)为它的图象的一个对称中心.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC,a,b,c分别为角A,B,C的对应边,若f(-$\frac{A}{2}$)=$\sqrt{2}$,a=3,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知幂函数y=f(x)的图象过点$(3,\frac{1}{3})$,则${log_{\frac{1}{2}}}f(2)$的值为1.

查看答案和解析>>

同步练习册答案