精英家教网 > 高中数学 > 题目详情

【题目】已知一个分段函数可利用函数 来表示,例如要表示一个分段函数 ,可将函数g(x)表示为g(x)=xS(x﹣2)+(﹣x)S(2﹣x).现有一个函数f(x)=(﹣x2+4x﹣3)S(x﹣1)+(x2﹣1)S(1﹣x).
(1)求函数f(x)在区间[0,4]上的最大值与最小值;
(2)若关于x的不等式f(x)≤kx对任意x∈[0,+∞)都成立,求实数k的取值范围.

【答案】
(1)解:由题意可知

当1≤x≤4时,f(x)=﹣(x﹣2)2+1,则f(x)在[1,2]上递增,在[2,4]上递减;

当0≤x<1时,f(x)=x2﹣1,则f(x)在[0,1)上递增,

而f(0)=﹣1,f(2)=1,f(4)=﹣3,所以f(x)max=f(2)=1,f(x)min=f(4)=﹣3


(2)解:由图可知,

当直线y=kx与抛物线y=﹣x2+4x﹣3只有一个交点时,令kx=﹣x2+4x﹣3,即x2+(k﹣4)x+3=0,由△=0,得(k﹣4)2﹣12=0,得k=4±2

结合图像,可知当k≥4﹣2 时,关于x的不等式f(x)≤kx对任意x∈[0,+∞)都成立


【解析】(1)由题意可知 ,利用二次函数的单调性可求得函数f(x)在区间[0,4]上的最大值与最小值;(2)在同一坐标系中作出y=f(x)与y=kx的图像,令kx=﹣x2+4x﹣3,即x2+(k﹣4)x+3=0,由△=0可求得k的值,结合图像可求得,对任意x∈[0,+∞)都成立时,实数k的取值范围.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】证明与化简.
(1)求证:cotα=tanα+2cot2α;
(2)请利用(1)的结论证明:cotα=tanα+2tan2α+4cot4α;
(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明:
(4)化简:tan5°+2tan10°+4tan20°+8tan50°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n∈N,f(x)=(1+x)m+(1+x)n
(1)当m=n=5时,若 ,求a0+a2+a4的值;
(2)f(x)展开式中x的系数是9,当m,n变化时,求x2系数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(mx2+mx+1),若此函数的定义域为R,则实数m的取值范围是;若此函数的值域为R,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx+c(b,c∈R),并设
(1)若F(x)图像在x=0处的切线方程为x﹣y=0,求b、c的值;
(2)若函数F(x)是(﹣∞,+∞)上单调递减,则 ①当x≥0时,试判断f(x)与(x+c)2的大小关系,并证明之;
②对满足题设条件的任意b、c,不等式f(c)﹣Mc2≤f(b)﹣Mb2恒成立,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)在(0,+∞)上是增函数,且f( )=0,则不等式xf(x)>0的解集是(
A.(0,
B.( ,+∞)??
C.(﹣ ,0)∪( ,+∞)
D.(﹣∞,﹣ )∪(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定义在[﹣1,2]上的函数f(x)的图象为折线段ACB,

(1)求函数f(x)的解析式;
(2)请用数形结合的方法求不等式f(x)≥log2(x+1)的解集,不需要证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为 (其中为常数).

(1)求函数的解析式;

(2)若对任意,不等式恒成立,求实数的取值范围;

(3)当时,求证: (其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知设函数f(x)=loga(1+2x)﹣loga(1﹣2x)(a>0,a≠1).
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并证明;
(3)求使f(x)>0的x的取值范围.

查看答案和解析>>

同步练习册答案