【题目】已知设函数f(x)=loga(1+2x)﹣loga(1﹣2x)(a>0,a≠1).
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并证明;
(3)求使f(x)>0的x的取值范围.
【答案】
(1)解:函数f(x)=loga(1+2x)﹣(loga(1﹣2x)(a>0,a≠1).
其定义域满足 ,解得:
故得f(x)的定义域为{x| }
(2)解:由(1)可知f(x)的定义域为{x| },关于原点对称.
又∵f(﹣x)=loga(1﹣2x)﹣(loga(1+2x)=﹣f(x)
∴f(x)为奇函数
(3)解:f(x)>0,即loga(1+2x)﹣loga(1﹣2x)>0,loga(1+2x)>loga(1﹣2x)
当a>1时,原不等式等价为:1+2x>1﹣2x,解得:x>0.
当0<a<1时,原不等式等价为:1+2x<1﹣2x,解得:x<0.
又∵f(x)的定义域为( , ).
所以使f(x)>0的x的取值范围,当a>1时为(0, );当0<a<1时为( ,0)
【解析】(1)根据对数函数的真数要大于0列不等式组求解定义域.(2)利用定义判断函数的奇偶性.(3)f(x)>0,即loga(1+2x)﹣loga(1﹣2x)>0,对底数a讨论,求解x的取值范围.
【考点精析】解答此题的关键在于理解函数的定义域及其求法的相关知识,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零,以及对函数的奇偶性的理解,了解偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
科目:高中数学 来源: 题型:
【题目】已知一个分段函数可利用函数 来表示,例如要表示一个分段函数 ,可将函数g(x)表示为g(x)=xS(x﹣2)+(﹣x)S(2﹣x).现有一个函数f(x)=(﹣x2+4x﹣3)S(x﹣1)+(x2﹣1)S(1﹣x).
(1)求函数f(x)在区间[0,4]上的最大值与最小值;
(2)若关于x的不等式f(x)≤kx对任意x∈[0,+∞)都成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
根据上表可得回归方程 = x+ 的 为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.65.5万元
C.67.7万元
D.72.0万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,四边形为等腰梯形,,,,与相交于,且,矩形底面,为线段上一动点,满足.
(Ⅰ)若平面,求实数的值;
(Ⅱ)当时,锐二面角的余弦值为,求多面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.
(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望;
(2)求第二次训练时恰好取到一个新球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出定义:若 m﹣ <x≤m+ (其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=x﹣{x}的四个命题:
①函数y=f(x)的定义域是R,值域是(﹣ , ]
②函数y=f(x)的图象关于y轴对称;
③数y=f(x)的图象关于坐标原点对称;
④函数y=f(x)在(﹣ , ]上是增函数;
则其中正确命题是(填序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com