精英家教网 > 高中数学 > 题目详情
14.如图所示,梯形ABCD中,AD∥BC,它的两条对角线交于O,若S△AOD:S△ACD=1:4,则S△AOD:S△BOC=1:9.

分析 先根据△AOD与△ACD面积的比,求出它们AD边上的高的比是1:4,△AOD的AD边上的高与△BOC的BC边上的高的比是1:(4-1)=1:3;又AD∥BC,所以△AOD∽△BOC,面积的比就等于相似比的平方.

解答 解:∵AD∥BC,∴△AOD∽△BOC,
∵S△AOD:S△ACD=1:4,AD是两三角形的底边,
∴AD边上的高的比是1:4,
即△AOD与梯形的高的比是1:4,
∴△AOD与△BOC对应高的比为1:(4-1)=1:3,
∴S△AOD:S△BOC=1:9.
故答案为:1:9.

点评 本题利用等底三角形面积的比等于高的比和相似三角形面积的比等于相似比的平方求解,难度适中.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在Rt△ABC中,A=$\frac{π}{2}$,AB=1,AC=2,以AB方向、AC方向为x轴、y轴建立平面直角坐标系,点P(x,y)在△ABC内部及边界上运动,记z=x+y,则z的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=x3-6x2+9x+a有三个不同的零点,则下述判断中一定正确的是(  )
A.a为任意实数B.a=f′(3)C.a>f′(3)D.a<f′(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,△ABC为⊙O的内接三角形,D,E分别为BC,AB的中点,直线DE交圆O于F,G,且直线DE与过A点的切线交于点P,DF=1,DE=2,PE=3.
(1)求证:△PEA~△BDE;
(2)求线段PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E是BC的中点,F是棱CD上的动点,G为C1D1的中点,H为A1G的中点.
( I)当点F与点D重合时,求证:EF⊥AH;
( II)设二面角C1-EF-C的大小为θ,试确定点F的位置,使得sin θ=$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如表的列联表.
 优秀非优秀总计
甲班10  
乙班 30 
合计  100
已知在全部100人中抽到随机抽取1人为优秀的概率为$\frac{3}{10}$
(1)请完成如表的列联表;
(2)根据列联表的数据,有多大的把握认为“成绩与班级有关系“?
(3)按分层抽样的方法,从优秀学生中抽出6名学生组成一个样本,再从样本中抽出2名学生,记甲班被抽到的人数为ξ,求ξ的分布列和数学期望.
参考公式和数据:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d
下面的临界值表供参考:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某益智闯关节目对前期不同年龄段参赛选手的闯关情况进行统计,得到如下2×2列联表,已知从30~40岁年龄段中随机选取一人,其恰好闯关成功的概率为$\frac{5}{9}$.
成功(人)失败(人)合计
20~30(岁)204060
30~40(岁)50
合计70
(1)完成2×2列联表;
(2)有多大把握认为闯关成功与年龄是否有关?
附:临界值表供参考公式
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数f(x)=$\frac{1}{xlnx}$的单调区间.

查看答案和解析>>

科目:高中数学 来源:2017届甘肃兰州一中高三9月月考数学(文)试卷(解析版) 题型:选择题

已知直线l:x+ay-1=0(aR)是圆C:的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|= ( )

A.2 B. C.6 D.

查看答案和解析>>

同步练习册答案