精英家教网 > 高中数学 > 题目详情
19.有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如表的列联表.
 优秀非优秀总计
甲班10  
乙班 30 
合计  100
已知在全部100人中抽到随机抽取1人为优秀的概率为$\frac{3}{10}$
(1)请完成如表的列联表;
(2)根据列联表的数据,有多大的把握认为“成绩与班级有关系“?
(3)按分层抽样的方法,从优秀学生中抽出6名学生组成一个样本,再从样本中抽出2名学生,记甲班被抽到的人数为ξ,求ξ的分布列和数学期望.
参考公式和数据:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d
下面的临界值表供参考:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

分析 (1)数学考试优秀人数有100×$\frac{3}{10}$=30人,即可将2×2列联表补充完整;
(2)根据2×2列联表,代入求临界值的公式,求出观测值,利用观测值同临界值表进行比较,由K2≈4.762>3.841,故有95%的把握认为“成绩与班级有关系”;
(3)根据分层抽样甲班2人,乙班4人,则甲班被抽到的人数为ξ的取值0,1,2,分别求得其概率及分布列,根据分布列求得其数学期望.

解答 解:(1)数学考试优秀人数有100×$\frac{3}{10}$=30人        …(1分)
补充完成2×2列联表如下:…(3分)

优秀非优秀总计
甲班104050
乙班203050
合计3070100
(2)K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$=$\frac{100×(10×30-40×20)^{2}}{50×50×30×70}$≈4.762>3.841,…(5分)
∵P(K2>3.841)=0.05,
∴1-0.05=95%,
∴有95%的把握认为“成绩与班级有关系”…(6分)
(3)按分层抽样,甲班抽取优秀学生人数为6×$\frac{10}{30}$=2人,
乙班抽取优秀学生人数为6-2=4人,则ξ=0,1,2,…(7分)
P(ξ=0)=$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{2}{5}$,P(ξ=1)=$\frac{{C}_{2}^{1}{C}_{4}^{1}}{{C}_{6}^{2}}$=$\frac{8}{15}$,P(ξ=2)=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{15}$,…(10分)
∴ξ的分布列为…(11分)
ξ012
P$\frac{2}{5}$$\frac{8}{15}$$\frac{1}{15}$
∴ξ的数学期望为E(ξ)=0×$\frac{2}{5}$+1×$\frac{8}{15}$+2×$\frac{1}{15}$=$\frac{2}{3}$…(12分)

点评 本题考查独立性检验知识的运用,考查超几何分布的概率计算公式、分布列及数学期望,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2+ax,若f(f(0))=4a.
(1)求实数a的值;
(2)计算f(3)-f(-1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=|ax+2|,g(x)=|2x+b|.
(1)若a=1,b=-2,求不等式f(x)-g(x)≥-2的解集;
(2)求证:f(x)≥g(x)恒成立,的条件为ab=4且|a|≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,直三棱柱ABC-A1B1C1的底面为正三角形,E、F分别是BC、CC1的中点.
(1)证明:平面AEF⊥平面B1BCC1
(2)若D为AB中点,∠CA1D=45°且AB=2,求三棱锥F-AEC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图所示,梯形ABCD中,AD∥BC,它的两条对角线交于O,若S△AOD:S△ACD=1:4,则S△AOD:S△BOC=1:9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知四棱锥P-ABCD的底面为正方形,且PA=PB=PC=PD=$\sqrt{3}$.若其外接球半径为2,则四棱锥P-ABCD的高为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在△ABC的边AB、AC上分别取D、E两点,使BD=CE,DE延长线交BC的延长线于F,求证:$\frac{DF}{EF}$=$\frac{AC}{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}满足:a1=1,an+1=2an+1,数列{bn}满足:bn=${log_{({a_{n+1}})}}$a,其中a>0且a≠1,n∈N*
(1)求证:数列{an+1}为等比数列,并求出数列{an}的通项公式;
(2)试问数列$\left\{{\frac{1}{b_n}}\right\}$是否为等差数列,如果是,请写出公差,如果不是,说明理由;
(3)若a=2,记cn=$\frac{1}{{({a_n}+1){b_n}}}$,数列{Cn}的前n项和为Tn,数列$\left\{{\frac{1}{b_n}}\right\}$的前n项和为Rn,若对任意n∈N*,不等式λnTn+$\frac{{2{R_n}}}{{{a_n}+1}}$<2(λn+$\frac{3}{{{a_n}+1}}$)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2017届甘肃兰州一中高三9月月考数学(文)试卷(解析版) 题型:选择题

已知复数为纯虚数,那么实数( )

A. B. C. D.

查看答案和解析>>

同步练习册答案