精英家教网 > 高中数学 > 题目详情
10.已知f(x)=|ax+2|,g(x)=|2x+b|.
(1)若a=1,b=-2,求不等式f(x)-g(x)≥-2的解集;
(2)求证:f(x)≥g(x)恒成立,的条件为ab=4且|a|≥2.

分析 (1)若a=1,b=-2,分类讨论求不等式f(x)-g(x)≥-2的解集;
(2)f(x)≥g(x),即|ax+2|≥|2x+b|,即(a2-4)x2+(4a-4b)x+4-b2≥0,利用二次函数的性质,即可证明结论.

解答 (1)解:a=1,b=-2,不等式f(x)-g(x)≥-2,即|x+2|-|2x-2|≥-2.
x≤-2时,-x-2+2x-2≥-2,解得x≥2,无解;
-2<x<1时,x+2+2x-2≥-2,解得x≥-$\frac{2}{3}$,∴-$\frac{2}{3}$≤x<1;
x≥1时,x+2-2x+2≥-2,解得x≤6,∴1≤x≤6;
综上所述,不等式的解集为{x|-$\frac{2}{3}$≤x≤6};
(2)证明:f(x)≥g(x),即|ax+2|≥|2x+b|.
∴(a2-4)x2+(4a-4b)x+4-b2≥0,
∵f(x)≥g(x)恒成立,
∴$\left\{\begin{array}{l}{{a}^{2}-4≥0}\\{(4a-4b)^{2}-4({a}^{2}-4)(4-{b}^{2})≤0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{|a|≥2}\\{(ab-4)^{2}≤0}\end{array}\right.$,
∴ab=4且|a|≥2.

点评 本题考查绝对值不等式的解法,考查恒成立问题,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.多面体ABCDFE中,底面四边形ABCD为矩形,EF∥AD,AE=FD,FG=GD,AD=2AB=2EF=2,且四边形EADF的面积为$\frac{3\sqrt{3}}{4}$.
(1)判断直线BF与平面ACG的关系,并说明理由;
(2)若平面EADF⊥平面ABCD,求平面FBC与平面ACG形成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将方程组写成矩阵形式:
$\left\{\begin{array}{l}{2x+y-z=0}\\{7x+10y=330}\\{5y+8z=220}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某统计部门随机抽查了3月1日这一天新世纪百货童装部100名顾客的购买情况,得到如图数据统计表,已知购买金额在2000元以上(不含2000元)的频率为0.4.
购买金额频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合计1001.00
(1)确定x,y,p,q的值;
(2)为进一步了解童装部的购买情况是否与顾客性别有关,对这100名顾客调查显示:购物金额在2000元以上的顾客中女顾客有35人,购物金额在2000元以下(含2000元)的顾客中男顾客有20人;
①请将列联表补充完整:
女顾客男顾客合计
购物金额在2000元以上35
购物金额在2000元以下20
合计100
②并据此列联表,判断是否有97.5%的把握认为童装部的购买情况与顾客性别有关?
参考数据:
P(K2≥k)0.010.050.0250.01
k2.7063.8415.0246.635
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=x3-6x2+9x+a有三个不同的零点,则下述判断中一定正确的是(  )
A.a为任意实数B.a=f′(3)C.a>f′(3)D.a<f′(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某班有25名男生、15名女生共40人,现对他们更爱好文娱还是更爱好体育进行调查,根据调查得到的数据,所绘制的二维条形图如图.
(1)根据图中数据,制作2×2列联表,并判断能否在犯错概率不超过0.10的前提下认为性别与是否更爱好体育有关系?
(2)若要从更爱好体育的学生中各随机选2人,求所选2人中女生人数X的期望;
(3)若要从更爱好文娱和更爱好体育的学生中各选一人分别做文体活动协调人,求选出的两人恰好是一男一女的概率;
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
 更爱好体育更爱好文娱 合计
 男生   
 女生   
 合计  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,△ABC为⊙O的内接三角形,D,E分别为BC,AB的中点,直线DE交圆O于F,G,且直线DE与过A点的切线交于点P,DF=1,DE=2,PE=3.
(1)求证:△PEA~△BDE;
(2)求线段PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如表的列联表.
 优秀非优秀总计
甲班10  
乙班 30 
合计  100
已知在全部100人中抽到随机抽取1人为优秀的概率为$\frac{3}{10}$
(1)请完成如表的列联表;
(2)根据列联表的数据,有多大的把握认为“成绩与班级有关系“?
(3)按分层抽样的方法,从优秀学生中抽出6名学生组成一个样本,再从样本中抽出2名学生,记甲班被抽到的人数为ξ,求ξ的分布列和数学期望.
参考公式和数据:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d
下面的临界值表供参考:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图(1)是正方体木块截去一个三棱柱后得到的几何体,图(2)是该几何体的侧视图.点P是A′F和D′E的交点

(1)求直线AP与平面A′D′FE所成角的正弦值.
(2)经过BC及点P锯开该几何体,该怎样画线?并求出锯截面的面积.

查看答案和解析>>

同步练习册答案