精英家教网 > 高中数学 > 题目详情
11.如图,在△ABC的边AB、AC上分别取D、E两点,使BD=CE,DE延长线交BC的延长线于F,求证:$\frac{DF}{EF}$=$\frac{AC}{AB}$.

分析 过E做EO∥BD,交BC于O,根据平行线得出比例式,即可得出答案.

解答 证明:过E做EO∥BD,交BC于O,则$\frac{DF}{EF}$=$\frac{DB}{EO}$,$\frac{AC}{AB}$=$\frac{CE}{EO}$,
∵BD=CE,
∴$\frac{DF}{EF}$=$\frac{AC}{AB}$.

点评 本题考查了平行线的性质的应用,主要考查学生的推理能力,题目比较好,难度适中.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.将方程组写成矩阵形式:
$\left\{\begin{array}{l}{2x+y-z=0}\\{7x+10y=330}\\{5y+8z=220}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,△ABC为⊙O的内接三角形,D,E分别为BC,AB的中点,直线DE交圆O于F,G,且直线DE与过A点的切线交于点P,DF=1,DE=2,PE=3.
(1)求证:△PEA~△BDE;
(2)求线段PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如表的列联表.
 优秀非优秀总计
甲班10  
乙班 30 
合计  100
已知在全部100人中抽到随机抽取1人为优秀的概率为$\frac{3}{10}$
(1)请完成如表的列联表;
(2)根据列联表的数据,有多大的把握认为“成绩与班级有关系“?
(3)按分层抽样的方法,从优秀学生中抽出6名学生组成一个样本,再从样本中抽出2名学生,记甲班被抽到的人数为ξ,求ξ的分布列和数学期望.
参考公式和数据:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d
下面的临界值表供参考:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某益智闯关节目对前期不同年龄段参赛选手的闯关情况进行统计,得到如下2×2列联表,已知从30~40岁年龄段中随机选取一人,其恰好闯关成功的概率为$\frac{5}{9}$.
成功(人)失败(人)合计
20~30(岁)204060
30~40(岁)50
合计70
(1)完成2×2列联表;
(2)有多大把握认为闯关成功与年龄是否有关?
附:临界值表供参考公式
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,△ABC中,C点在AB边上的射影为D点.且CD2=AD•DB,求证,△ABC为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数f(x)=$\frac{1}{xlnx}$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图(1)是正方体木块截去一个三棱柱后得到的几何体,图(2)是该几何体的侧视图.点P是A′F和D′E的交点

(1)求直线AP与平面A′D′FE所成角的正弦值.
(2)经过BC及点P锯开该几何体,该怎样画线?并求出锯截面的面积.

查看答案和解析>>

科目:高中数学 来源:2017届甘肃会宁县一中高三上学期9月月考数学(文)试卷(解析版) 题型:解答题

已知函数.

(1)当x∈[1,4]时,求函数的值域;

(2)如果对任意的x∈[1,4],不等式恒成立,求实数k的取值范围

查看答案和解析>>

同步练习册答案