(本小题12分) a,b,c为△ABC的三边,其面积S△ABC=12,bc=48,b-c=2,求a;
当A=60°时,a2=52,a=2 ,当A=120°时,a2=148,a=2 。
解析试题分析:利用三角形的面积公式列出关于sinA的等式,求出sinA的值,通过解已知条件中关于b,c的方程求出b,c的值,分两种情况,利用余弦定理求出边a的值.
解:由S△ABC=bcsinA,得12=×48×sinA
∴ sinA= 2分
∴ A=60°或A=120° 2分
a2=b2+c2-2bccosA
=(b-c)2+2bc(1-cosA)
=4+2×48×(1-cosA) 4分
当A=60°时,a2=52,a=2 2分
当A=120°时,a2=148,a=2 2分
考点:本题主要考查运用正弦面积公式和余弦定理解三角形问题。
点评:解决该试题的关键是求三角形的题目,一般利用正弦定理、余弦定理及三角形的面积公式列方程解决
科目:高中数学 来源: 题型:解答题
(本小题满分12分)在ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=cosC.
(Ⅰ)求tanC的值;
(Ⅱ)若a=,求ABC的面积
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com