精英家教网 > 高中数学 > 题目详情
3.已知复数z1=cosα+isinα,z2=cosβ+isinβ,则复数z1•z2的实部是cos(α+β).

分析 利用多项式乘多项式展开,结合两角和与差的正弦、余弦化简得答案.

解答 解:∵z1=cosα+isinα,z2=cosβ+isinβ,
∴z1•z2=(cosα+isinα)(cosβ+isinβ)
=cosαcosβ-sinαsinβ+(cosαsinβ+sinαcosβ)i
=cos(α+β)+sin(α+β)i.
∴z1•z2的实部为cos(α+β).
故答案为:cos(α+β).

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.阅读如图的程序框图,则输出的S等于(  )
 
A.55B.30C.20D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线x2=-6by的准线与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右支分别交于B、C两点,A为双曲线的右顶点,O为坐标原点,若∠AOC=∠BOC,则双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.3C.$\frac{4\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某校甲、乙、丙、丁四个课外兴趣班分别有75、75、200、150名学生,用分层抽样的方法从该校这四个班共抽取20名学生参加某兴趣活动,则应在丙班抽取的学生人数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若f(x)=$\frac{e^x}{x}$,f'(x)为f(x)的导函数,则f'(x)=(  )
A.f'(x)=$-\frac{e^x}{x}$B.f'(x)=$\frac{{x{e^x}-{e^x}}}{x^2}$C.f'(x)=$\frac{{x{e^x}+{e^x}}}{x^2}$D.f'(x)=$\frac{{x{e^x}-{e^x}}}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=x3+x+1,若对任意的x,都有f(x2+a)+f(ax)>2,则实数a的取值范围是0<a<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.假设行列式的计算公式:$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,若f(x)=$|\begin{array}{l}{x}&{x}\\{3}&{{x}^{2}}\end{array}|$,则函数f(x)的单调减区间为(  )
A.$(-\sqrt{3},\sqrt{3})$B.(-1,1)C.$(-\sqrt{2},\sqrt{2})$D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|x2-2x-3<0},B={x|2a-1<x<a+1},a∈R.
(Ⅰ)若B⊆A,求实数a的取值范围;
(Ⅱ)设函数$f(x)=4sin(2x+\frac{π}{3})+1$,若实数x0满足f(x0)∈A,求实数x0取值的集合.

查看答案和解析>>

同步练习册答案