精英家教网 > 高中数学 > 题目详情
13.设m>1,在约束条件$\left\{\begin{array}{l}{y≥x}\\{x+y≤1}\\{y≤mx+m}\end{array}\right.$下,目标函数z=x+5y的最小值为-8,则m的值为(  )
A.3B.$\frac{13}{5}$C.4D.8

分析 先画出线性约束条件的可行域,再利用目标函数的几何意义,数形结合先确定最优解,代入直线方程即可得m的值.

解答 解:作出不等式组对应的平面区域如图:
由z=x+5y得y=-$\frac{1}{5}$x+$\frac{z}{5}$,
∵m>1,
∴直线y=mx+m=m(x+1)过点且斜率m>1,
平移直线y=-$\frac{1}{5}$x+$\frac{z}{5}$,由图象可知当直线y=-$\frac{1}{5}$x+$\frac{z}{5}$,经过点A时,
直线y=-$\frac{1}{5}$x+$\frac{z}{5}$的截距最小,此时z最小为-8,
即x+5y=-8,
由$\left\{\begin{array}{l}{x+5y=-8}\\{y=x}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\frac{4}{3}}\\{y=-\frac{4}{3}}\end{array}\right.$,即A($-\frac{4}{3}$,$-\frac{4}{3}$),
此时A也在直线y=mx+m上,则$-\frac{4}{3}$=m($-\frac{4}{3}$+1)=-$\frac{1}{3}$m,
解得m=4,
故选:C.

点评 本题主要考查线性规划的应用,利用z的几何意义,结合数形结合先确定最优解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.光在某处的照度与光的强度成正比,与光源距离的平方成反比,假设比例系数都为1.强度分别为a,b的两个光源A,B间的距离为d,在连结两光源的线段AB(不含端点)上有一点P,设PA=x,P点处的“总照度”等于各照度之和.
(I)若a=8,b=1,d=3,求点P的“总照度”I(x)的函数表达式;
(II)在(1)问中,点P在何处总照度最小?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a>0,b>0,若1是a与b的等差中项,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.8B.4C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足不等式$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y,若x的最大值与最小值之和是6,则实数a的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知某工厂工人某天加工的零件个数的茎叶图如图所示,那么工人生产的零件个数超过130的比例是(  )
A.13.3%B.10%C.$\frac{3}{20}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,B=60°,b=$\sqrt{3}$,则c+2a的最大值2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若sinθ=2cosθ,则sin2θ+sinθcosθ-2cos2θ=(  )
A.$-\frac{4}{3}$B.$\frac{5}{4}$C.$-\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.抛掷三枚不同的具有正、反两面的金属制品A1、A2、A3,假定A1正面向上的概率为$\frac{1}{2}$,A2正面向上的概率为$\frac{1}{3}$,A3正面向上的概率为t(0<t<1),把这三枚金属制品各抛掷一次,设ξ表示正面向上的枚数.
(1)求ξ的分布列及数学期望Eξ(用t表示);
(2)令an=(2n-1)cos($\frac{6nπ}{5+6t}$Eξ)(n∈N+),求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}中,a2=2,a5=128.
(1)求通项an
(2)若bn=log2an,{bn•an}数列的前n项和为Sn,求Sn的值.

查看答案和解析>>

同步练习册答案