精英家教网 > 高中数学 > 题目详情
6.已知复数z的实部为2,虚部为1,则(2-i)z=(  )
A.4+iB.4-iC.5D.4

分析 利用复数代数形式的运算法则求解.

解答 解:∵复数z的实部为2,虚部为1,
∴(2-i)z=(2-i)(2+i)=4-i2=5.
故选:C.

点评 本题考查复数的运算,是基础题,解题时要认真审题,注意复数代数形式的运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知集合A={α|α=k•135°,k∈Z},B={β|β=k•150°,k∈Z,-10≤k≤8},求与A∩B中的角终边相同的角的集合S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,∠ACB=90°,CD⊥平面α,AD、BD和平面α所成的角分别为30°和45°,CD=h,求D点到直线AB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图,则该几何体的表面积为(  )
A.48+6$\sqrt{13}$B.78C.24+6$\sqrt{13}$D.68

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x>0,y>0,x+y+3=xy,且不等式(x+y)2-a(x+y)+1≥0恒成立.则实数a的取值范围是a≤$\frac{37}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=5cos2x+sin2x-4$\sqrt{3}$sinxcosx.
(1)化简f(x)的关系式,并求f(x)的最小正周期.
(2)当x∈[-$\frac{π}{6}$,$\frac{π}{4}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,sinA=2sinBcosC,且$\frac{a+b+c}{b+c-a}$=$\frac{3b}{c}$,则△ABC的形状为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,求:
(1)(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+3$\overrightarrow{b}$);
(2)|3$\overrightarrow{a}$-4$\overrightarrow{b}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
(1)若椭圆C过点(-3,0)和(2$\sqrt{2}$,$\frac{1}{3}$).
①求椭圆C的方程;
②若过椭圆C的下顶点D点作两条互相垂直的直线分别与椭圆C相交于点P,M,求证:直线PM经过一定点;
(2)若椭圆C过点(1,2),求椭圆C的中心到右准线的距离的最小值.

查看答案和解析>>

同步练习册答案