精英家教网 > 高中数学 > 题目详情
18.已知向量$\vec a=({sinx,-1})$,$\vec b=({\sqrt{3}cosx,-\frac{1}{2}})$,函数$f(x)=({\vec a+\vec b})•\vec a-2$.
(1)求函数f(x)在$[{0,\frac{2π}{3}})$上的最值;
(2)若a,b,c分别为△ABC的内角A,B,C的对边,其中A为锐角,$a=2\sqrt{3}$,c=4,且f(A)=1,求△ABC的面积S.

分析 (1)计算向量的数量积,利用二倍角.两角和的正弦函数化简函数f(x)的表达式,得到一个角的一个三角函数的形式;借助正弦函数的最值,求出函数f(x)在$[{0,\frac{2π}{3}})$上的最值;
(2)由f(A)=sin(2A-$\frac{π}{6}$)=1,又A为锐角,即可解得A,从而由正弦定理解得C=$\frac{π}{2}$,可得△ABC为Rt△,即可求得b,由三角形面积公式即可得解.

解答 解:(1)$f(x)=({\vec a+\vec b})•\vec a-2={\vec a^2}+\vec a•\vec b-2$
=${sin^2}x+1+\sqrt{3}sinxcosx+\frac{1}{2}-2$
=$\frac{1-cos2x}{2}+\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}$
=$\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x$=$sin({2x-\frac{π}{6}})$.
当$x∈[{0,\frac{2π}{3}})$时,$2x-\frac{π}{6}∈[{-\frac{π}{6},\frac{7π}{6}})$,
结合正弦函数的图象知,当$2x-\frac{π}{6}=-\frac{π}{6}$,即x=0时,函数f(x)取得最小值,且最小值为$-\frac{1}{2}$;
当$2x-\frac{π}{6}=\frac{π}{2}$,即$x=\frac{π}{3}$时,函数f(x)取得最大值,且最大值为1.
所以函数f(x)在$[{0,\frac{2π}{3}})$上的最大值为1,最小值为$-\frac{1}{2}$;
(2)由(1)知$f(A)=sin({2A-\frac{π}{6}})=1$.
因为$A∈({0,\frac{π}{2}})$,$2A-\frac{π}{6}∈({-\frac{π}{6},\frac{5π}{6}})$,
所以$2A-\frac{π}{6}=\frac{π}{2}$,$A=\frac{π}{3}$.
由a2=b2+c2-2bccosA,得$12={b^2}+16-2×4b×\frac{1}{2}$,
即b2-4b+4=0,解得b=2.
故$S=\frac{1}{2}bcsinA=\frac{1}{2}×2×4×sin\frac{π}{3}=2\sqrt{3}$.

点评 本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,正弦函数的图象和性质,正弦定理,三角形面积公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知奇函数f(x)的定义域为R,直线x=1是曲线y=f(x)的对称轴,且f(3)=1,则f(7)+f(8)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在等比数列{an}中,Sn是其前n项和,若a3=3且2Sn+3Sn+2=5Sn+1,则数列{an}的通项公式为an=$3×(\frac{2}{3})^{n-3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知A={x|-1≤x≤1},B={0,2,4,6},则A∩B={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a,b,c分别是△ABC中角A,B,C的对边,若$a=\sqrt{2}$,b=2,cos2(A+B)=0,则c=(  )
A.$\sqrt{2}$B.$\sqrt{10}$C.$\sqrt{2}$或$\sqrt{10}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,已知正方体ABCD-A1B1C1D1棱长为4,点H在棱AA1上,且HA1=1.在侧面BCC1B1内作边长为1的正方形EFGC1,P是侧面BCC1B1内一动点,且点P到平面CDD1C1距离等于线段PF的长.则当点P运动时,
(1)P的轨迹方程是2x-1=(z-3)2
(2)|HP|2的最小值是22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将一个气球的半径扩大1倍,它的体积扩大到原来的(  )倍.
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.电视传媒公司为了了解某地区电视观众对耨泪体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查得到的2×2列联表:
非体育迷体育迷总计
301545
451055
总计7525100
问:在犯错误的概率不超过0.10的前提下,是否可以认为“体育迷”与性别有关.
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ab-bc)}^2}}}{(a+b)(b+c)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD底面为一直角梯形,AB⊥AD,CD⊥AD,CD=2AB,PA⊥面ABCD,E为PC中点
(Ⅰ)求证:平面PDC⊥平面PAD
(Ⅱ)求证:BE∥平面PAD
(Ⅲ) 假定PA=AD=CD,求二面角E-BD-C的正切值.

查看答案和解析>>

同步练习册答案