精英家教网 > 高中数学 > 题目详情
7.电视传媒公司为了了解某地区电视观众对耨泪体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查得到的2×2列联表:
非体育迷体育迷总计
301545
451055
总计7525100
问:在犯错误的概率不超过0.10的前提下,是否可以认为“体育迷”与性别有关.
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ab-bc)}^2}}}{(a+b)(b+c)(a+c)(b+d)}$.

分析 求出K2,与临界值比较,即可得出结论.

解答 解:${K^2}=\frac{{100{{(30×10-45×15)}^2}}}{75×25×45×55}≈3.030>2.706$
所以在犯错误概率不超过0.10的前提下可以认为“体育迷”与性别有关.

点评 本题考查独立性检验知识的运用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列命题中,真命题是(  )
A.?x0∈[0,$\frac{π}{2}$],sinx0+cosx0≥2B.?x∈(3,+∞),x2>2x+1
C.?x0∈R,x02+x0=-1D.?x∈R,tanx≥sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\vec a=({sinx,-1})$,$\vec b=({\sqrt{3}cosx,-\frac{1}{2}})$,函数$f(x)=({\vec a+\vec b})•\vec a-2$.
(1)求函数f(x)在$[{0,\frac{2π}{3}})$上的最值;
(2)若a,b,c分别为△ABC的内角A,B,C的对边,其中A为锐角,$a=2\sqrt{3}$,c=4,且f(A)=1,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(2,x),$\overrightarrow{b}$=(一4,2).若($\overrightarrow{a}$+$\overrightarrow{b}$)∥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则实数x的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U={0,1,2,3}且∁UA={0,2},则集合A=(  )
A.{0,1}B.{1,2}C.{0,3}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}的公差d>0,设{an}的前n项和为Sn,a1=1,S2•S3=36,则 d=2,Sn=n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等差数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=34,则a1=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若f(x)=ln(e3x+1)+ax是偶函数,则a的值等于(  )
A.$\frac{5}{2}$B.-$\frac{5}{2}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.平面直角坐标系中,直线l的参数方程$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为p2cos2θ+p2sinθ-2psinθ-3=0
(1)求直线l的极坐标方程;
(2)若直线l与曲线C相交于A,B两点,求|AB|.

查看答案和解析>>

同步练习册答案