精英家教网 > 高中数学 > 题目详情
12.已知等差数列{an}的公差d>0,设{an}的前n项和为Sn,a1=1,S2•S3=36,则 d=2,Sn=n2

分析 根据题意和等差数列的前n项公式列出方程,求出公差d,代入公式求出Sn

解答 解:由题意得,a1=1,S2•S3=36,
则(2+d)(3+3d)=36,即d2+3d-10=0,
解得d=2或d=-5(舍去),
所以Sn=$n{a}_{1}+\frac{n(n-1)}{2}×d$=n+n(n-1)=n2
故答案为:2;    n2

点评 本题考查了等差数列的前n项和公式,以及方程思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$=(3,-1),若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则向量$\overrightarrow{c}$可以是(  )
A.(-3,6)B.(4,2)C.(2,4)D.(-4,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,已知正方体ABCD-A1B1C1D1棱长为4,点H在棱AA1上,且HA1=1.在侧面BCC1B1内作边长为1的正方形EFGC1,P是侧面BCC1B1内一动点,且点P到平面CDD1C1距离等于线段PF的长.则当点P运动时,
(1)P的轨迹方程是2x-1=(z-3)2
(2)|HP|2的最小值是22.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过抛物线x=8y2的焦点作两条互相垂直的弦AB、CD,则$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.电视传媒公司为了了解某地区电视观众对耨泪体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查得到的2×2列联表:
非体育迷体育迷总计
301545
451055
总计7525100
问:在犯错误的概率不超过0.10的前提下,是否可以认为“体育迷”与性别有关.
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ab-bc)}^2}}}{(a+b)(b+c)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知(x,y)在映射f下的像是(x+y,x-y),则像(1,2)在f下的原像为(  )
A.$(\frac{3}{2},\frac{1}{2})$B.$(-\frac{3}{2},\frac{1}{2})$C.$(-\frac{3}{2},-\frac{1}{2})$D.$(\frac{3}{2},-\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$,且经过点M(4,1).直线l:y=x+m交椭圆于A,B两不同的点.
(1)求椭圆方程;
(2)若直线l与椭圆有两个不同的交点,求m的取值范围;  
(3)若直线l不过点M,求证:直线MA,MB与x轴围成等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正方形ABCD的边长为2,直线MN过正方形的中心O交线段AD,BC于M,N两点,若点P满足$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),则$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={x|y=$\sqrt{2-x}$},B={y|y=ln(3-x)},则A∩B(  )
A.{x|x≤2}B.{x|x<3}C.{x|2<x≤3}D.{x|2≤x<3}

查看答案和解析>>

同步练习册答案