精英家教网 > 高中数学 > 题目详情
13.已知数列{an}满足an>1,过点(an,0)的直线ln与圆x2+y2=1在第一象限相切于点Pn,若记Pn的横坐标为bn,则$\frac{{a}_{1}{b}_{1}+{a}_{2}{b}_{2}+..+{a}_{n}{b}_{n}}{({a}_{1}{a}_{2}…{a}_{n})({b}_{1}{b}_{2}…{b}_{n})}$等于(  )
A.2-21-nB.2n-1C.1D.n

分析 设点Pn(bn,cn),即有bn2+cn2=1,即有切线的斜率,再由两直线垂直的条件,可得anbn=1,n∈N*,代入所求式子,即可得到所求值.

解答 解:设点Pn(bn,cn),即有bn2+cn2=1,
则切线的斜率为kn=$\frac{{c}_{n}}{{b}_{n}-{a}_{n}}$,
由OPn⊥ln,可得$\frac{{c}_{n}}{{b}_{n}-{a}_{n}}$•$\frac{{c}_{n}}{{b}_{n}}$=-1,
可得anbn=1,n∈N*
则$\frac{{a}_{1}{b}_{1}+{a}_{2}{b}_{2}+..+{a}_{n}{b}_{n}}{({a}_{1}{a}_{2}…{a}_{n})({b}_{1}{b}_{2}…{b}_{n})}$=$\frac{1+1+…+1}{({a}_{1}{b}_{1})({a}_{2}{b}_{2})…({a}_{n}{b}_{n})}$=n.
故选:D.

点评 本题考查直线和圆相切的条件,考查两直线垂直的条件:斜率之积为-1,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)图象的一段如图所示
(1)求此函数的解析式; 
(2)求函数f(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某种型号的书包原价为a元,如果连续两次以相同的百分率x降价,那么两次降价后价格为多少元?(  )
A.a(1-x)B.a(1-x)2C.a(1-2x)D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若两点A(0,a)、B(0,b)(a>b>0),点P在x轴正半轴上运动,试求当∠APB取得最大值时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在数列{an}中,an=(2n-1)3n,a1=3,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)|y=x},则A∩B的子集个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x>0,y>0且lg(x2+y2-4)≤0,则|2x+y-10|的取值范围是[5,8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知0<x<$\frac{π}{2}$,则函数$f(x)={3^{{{sin}^2}x}}+{3^{{{cos}^2}x}}$的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.[2sin50°+sin10°(1+$\sqrt{3}$tan10°)]•$\sqrt{2si{n}^{2}80°}$的值为$\sqrt{6}$.

查看答案和解析>>

同步练习册答案