精英家教网 > 高中数学 > 题目详情
2.设A,B是两个非空集合,定义集合A-B={x|x∈A且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},则A-B=(  )
A.{0,1}B.{1,2}C.{0,1,2}D.{0,1,2,5}

分析 化简集合A,B,利用A-B是集合A中的元素且不是B中的元素,求出A-B.

解答 解:∵A={x∈N|0≤x≤5}={0,1,2,3,4,5},B={x|x2-7x+10<0}=(2,5),
A-B={x|x∈A且x∉B},
∴A-B={0,1,2,5},
故选D.

点评 本题考查利用题中的定义求集合、考查二次不等式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lg(x+$\frac{a}{x}$-2),其中a是大于0的常数.
(1)当a=-3时,求函数f(x)的定义域;
(2)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某四棱锥的三视图如图所示,正视图、侧视图都是边长为$2\sqrt{3}$的等边三角形,俯视图是一个正方形,则此四棱锥的体积是(  )
A.$8\sqrt{3}$B.12C.24D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设公比为q(q>0)的等比数列{an}的前项和为Sn,若S2=3a2+2,S4=3a4+2,则a1=(  )
A.-2B.-1C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在矩形ABCD中,AB<BC,现将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中,给出下列结论:
①存在某个位置,使得直线AC与直线BD垂直;
②存在某个位置,使得直线AB与直线CD垂直;
③存在某个位置,使得直线AD与直线BC垂直.
其中正确结论的序号是②.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若${({\frac{3}{{\sqrt{x}}}-\root{3}{x}})^n}$的展开式中所有项系数的绝对值之和为1024,则该展开式中的常数项是(  )
A.-270B.270C.-90D.90

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设等差数列{an }的前n项和为Sn,已知a1=9,a2为整数,且Sn≤S5
(1)求{an }的通项公式;
(2)设数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和为Tn,求证:${T_n}≤\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点A(a,b)和点B(1,0)在直线3x-4y+10=0两侧,给出下列说法:
①3a-4b+10>0;
②当a>0时,a+b有最小值,无最大值;
③$\sqrt{{a^2}+{b^2}}>2$;
④当a>0且a≠1,b>0时,$\frac{b}{a-1}$的取值范围为$(-∞,-\frac{5}{2})∪(\frac{3}{4},+∞)$.
其中所有正确说法的序号是(  )
A.①②B.②③C.②③④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一个焦点与抛物线${y^2}=4\sqrt{3}x$的焦点重合,长轴长等于圆x2+y2-2x-15=0的半径,则椭圆C的方程为(  )
A.$\frac{x^2}{4}+\frac{y^2}{3}=1$B.$\frac{x^2}{16}+\frac{y^2}{12}=1$C.$\frac{x^2}{4}+{y^2}=1$D.$\frac{x^2}{16}+\frac{y^2}{4}=1$

查看答案和解析>>

同步练习册答案