精英家教网 > 高中数学 > 题目详情
11.已知点A(a,b)和点B(1,0)在直线3x-4y+10=0两侧,给出下列说法:
①3a-4b+10>0;
②当a>0时,a+b有最小值,无最大值;
③$\sqrt{{a^2}+{b^2}}>2$;
④当a>0且a≠1,b>0时,$\frac{b}{a-1}$的取值范围为$(-∞,-\frac{5}{2})∪(\frac{3}{4},+∞)$.
其中所有正确说法的序号是(  )
A.①②B.②③C.②③④D.③④

分析 根据点A(a,b)与点B(1,0)在直线3x-4y+10=0的两侧,可以画出点A(a,b)所在的平面区域,进而结合二元一次不等式的几何意义,两点之间距离公式的几何意义,及两点之间连线斜率的几何意义,逐一分析四个答案.可得结论.

解答 解:∵点A(a,b)与点B(1,0)在直线3x-4y+10=0的两侧,
故点A(a,b)在如图所示的平面区域内,

故3a-4b+10<0,即①错误;
当a>0时,a+b>$\frac{5}{2}$,a+b无最小值,也无最大值,故②错误;
设原点到直线3x-4y+10=0的距离为d,则d=$\frac{10}{\sqrt{{3}^{2}+(-4)^{2}}}$=2,则$\sqrt{{a^2}+{b^2}}>2$,故③正确;
当a>0且a≠1,b>0时,$\frac{b}{a-1}$表示点A(a,b)与B(1,0)连线的斜率,
∵当a=0,b=$\frac{5}{2}$时,$\frac{b}{a-1}$=-$\frac{5}{2}$,
又∵直线3x-4y+10=0的斜率为$\frac{3}{4}$,
故$\frac{b}{a-1}$的取值范围为(-∞,-$\frac{5}{2}$)∪($\frac{3}{4}$,+∞),故④正确;
故选:D

点评 本题以命题的真假判断与应用为载体,考查了复合命题,指数函数的图象和性质,方程根的存在性与个数判断等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.A、F分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左顶点和右焦点,A、F在双曲线的一条渐近线上的射影分别为B、Q,O为坐标原点,△ABO与△FQO的面积之比为$\frac{1}{2}$,则该双曲线的离心率为(  )
A.2B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设A,B是两个非空集合,定义集合A-B={x|x∈A且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},则A-B=(  )
A.{0,1}B.{1,2}C.{0,1,2}D.{0,1,2,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正数数列{an}中,a1=2,且点$(a_n^2,a_{n-1}^2)$在直线x-9y=0上,则{an}的前n项和Sn等于(  )
A.3n-1B.$\frac{{1-{{({-3})}^n}}}{2}$C.$\frac{{1+{3^n}}}{2}$D.$\frac{{3{n^2}+n}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答如下问题.

(Ⅰ)求全班人数及分数在[80,100]之间的频率;
(Ⅱ)现从分数在[80,100]之间的试卷中任取 3 份分析学生情况,设抽取的试卷分数在[90,100]的份数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.实数x,y满足$\left\{\begin{array}{l}{y-2x≤-2}\\{y≥1}\\{x+y≤4}\end{array}\right.$,则$\frac{y}{x}$的取值范围是$[\frac{1}{3},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题推断错误的是(  )
A.命题“若x=y,则sinx=siny”的逆否命题为真命题
B.若p且q为假命题,则p,q均为假命题
C.“x=-1”是“x2-5x-6=0”的充分不必要条件
D.命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在区间[-2,3]中任取一个数m,则使“双曲线$\frac{{x}^{2}}{{m}^{2}-1}$-$\frac{{y}^{2}}{4-m}$=1的离心率大于$\sqrt{3}$的概率是(  )
A.$\frac{7}{10}$B.$\frac{3}{10}$C.$\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在投篮测试中,每人投3次,其中至少有两次投中才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学能通过测试的概率为(  )
A.0.352B.0.432C.0.36D.0.648

查看答案和解析>>

同步练习册答案