精英家教网 > 高中数学 > 题目详情
11.若函数f(x)=x-alnx在点(1,1)处的切线方程为y=1,则实数a=1.

分析 求出函数的导数,求出切线的斜率,由条件可得a的方程,即可得到所求值.

解答 解:函数f(x)=x-alnx的导数为f′(x)=1-$\frac{a}{x}$,
由在点(1,1)处的切线方程为y=1,
可得在点(1,1)处的切线斜率为1-a=0,
解得a=1.
故答案为:1.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,正确求导是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序,则输出的i的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.曲线C:y=x3及其上一点P1(1,1),过P1作C的切线L1,L1与C的另一个公共点为P2,过P2作C的切线L2,L2与C的另一个公共点为P3,…,依次下去得到C的一系列切线L1,L2,…,Ln,…,相应切点分别为P1(a1,a13),P2(a2,a23),…,Pn(an,an3),…
(1)确定an与an+1(n∈N+)关系,并求an
(2)设Sn=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2|{a_n}|-1}}$(n∈N+),比较Sn与$\frac{n+1}{2}$大小,并用数学归纳法证明你的论断.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$sin(\frac{π}{4}-α)=\frac{3}{5}$,且$α∈(0,\frac{π}{4})$,则sin2α的值为$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设向量$\overrightarrow{{a}_{n}}$=(cos$\frac{nπ}{6}$,sin$\frac{nπ}{6}$+cos$\frac{nπ}{6}$),数列{bn}满足bn=$\overrightarrow{{a}_{n-1}}$•$\overrightarrow{{a}_{n}}$.求b1+b2+b3+…+b12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}满足,a2+a7+a8+a11=48,a3:a11=2:1
(1)求数列{an}的前11项和:
(2)求Tn=|a1|+|a2|+|a3|+…+|an|;
(3)Sn为{an}的前n项和,当n取何值Sn时取到最大值,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一个箱中原来装有大小相同的5个小球,其中3个红球,2个白球.规定:进行一次操作是指“从箱中随机取出一个球,如果取出的是红球,则把它放回箱中;如果取出的是白球,则该球不放回,并另补一个红球到箱中”.
(1)求进行第二次操作后,箱中红球个数为4的概率.
(2)求进行第二次操作后,箱中红球个数ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A、B、C所对的边分别为a,b,c,$\frac{π}{3}$<C<$\frac{π}{2}$,$\frac{b}{a-b}$=$\frac{sin2C}{sinA-sin2C}$,a=3,sinB=$\frac{\sqrt{11}}{6}$,则b=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设m为实数,函数f(x)=2x2+(x-m)|x-m|,h(x)=$\left\{\begin{array}{l}{\frac{f(x)}{x},x≠0}\\{0,x=0}\end{array}\right.$
(1)若f(1)≥4,求m的取值范围;
(2)若m>0,对一切x∈[1,2],不等式h(x)≥1恒成立,求正实数m的取值范围.

查看答案和解析>>

同步练习册答案