精英家教网 > 高中数学 > 题目详情
函数y=a|x-b|+2在(1,∞)上递增,则实数a,b满足的条件是
 
考点:函数单调性的性质
专题:函数的性质及应用
分析:由条件数形结合求得实数a,b满足的条件.
解答: 解:由函数y=a|x-b|+2的图象特征以及它在(1,∞)上递增,
可得a>0,且 b≤1,如图所示:
故答案为:a>0,且 b≤1.
点评:本题主要考查函数的图象特征,函数的单调性的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的方程4x+m•2x+m+1=0有两个不相等的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:3x=2-x(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3,对任意的x1,x2,满足x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1),若f(1+2a)+f(2+a)>0,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,0<ω≤2,0≤φ<π)是R上的偶函数,其图象经过点(0,2),又f(x)的图象关于N(
4
,0)对称,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中AB=BC,E为BC的中点,点D在射线BA上,连接DE,过点B作BM⊥DE于M,过点A作AN⊥DE于N.
(1)当点D是边AB的中点,如图1,易证明:AN+BM=2EM;
(2)当点D的位置如图2和图3时,上述结论是否成立,若成立,请给与在证明,若不成立,线段AN、BM、EM之间又有怎样的相等关系,写出你的猜想,不必证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的是
 
(写出所有正确命题的序号)
①在直角三角形中,三条边的长成等差数列的充要条件是它们的比为3:4:5;
②设Sn是等比数列{an}的前n项和,则公比q=-
34
2
是数列S3,S9,S6成等差教列的充分不必要条件;
③若数列{an}满足a1=2,an+1=ancos
2
,则a2010=0;
④在数列{an}中,若a1,a2都是正整数,且an=|an-1-an-2|,n=3,4,5…,则称{an}为“绝对差数列”,则此数列中必含有为0的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(ex)=ex,g(x)=
1
e
f(x)-(x+1)(e=2.718…)
(1)求函数g(x)的极大值;
(2)令F(x)=
x2
2
-f(x),求函数y=F(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1+cosθ-sinθ
1-cosθ-sinθ
+
1-cosθ-sinθ
1+cosθ-sinθ

查看答案和解析>>

同步练习册答案