精英家教网 > 高中数学 > 题目详情
在Rt△ABC中AB=BC,E为BC的中点,点D在射线BA上,连接DE,过点B作BM⊥DE于M,过点A作AN⊥DE于N.
(1)当点D是边AB的中点,如图1,易证明:AN+BM=2EM;
(2)当点D的位置如图2和图3时,上述结论是否成立,若成立,请给与在证明,若不成立,线段AN、BM、EM之间又有怎样的相等关系,写出你的猜想,不必证明.
考点:进行简单的合情推理
专题:推理和证明,立体几何
分析:设∠ADN=α,易得:∠BDM=∠EBM=α,可得AN=sinα•AD,BM=sinα•BD,EM=sinα•BE=
1
2
sinα•BC=
1
2
sinα•AB,可得图2中,AN+BM=2EM成立,图3中BM-AN=2EM成立.
解答: 证明:设∠ADN=α,易得:∠BDM=∠EBM=α,
则AN=sinα•AD,BM=sinα•BD,
EM=sinα•BE=
1
2
sinα•BC=
1
2
sinα•AB,
图2中:AN+BM=sinα•AD+sinα•BD=sinα•AB,
故AN+BM=2EM成立;
图3中,BM-AN=sinα•BD-sinα•AD=sinα•AB,
即此时:BM-AN=2EM
点评:本题考查的知识点是合情推理,平面几何证明,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若二次函数y=ax2+bx+c在区间[0,+∞)上是减函数,则点P(a,b)在平面直角坐标系中位于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,0≤φ≤
π
2
)的图象在y轴右侧的第一个最高点为P(
1
3
,2),在原点右侧与x轴的第一个交点为H(
5
6
,0)
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[
1
4
3
4
]上的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条平行线分别过P(-2,-2)、Q(1,3),当这两条直线之间的距离最大时,这两条平行线方程分别为
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=a|x-b|+2在(1,∞)上递增,则实数a,b满足的条件是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|a|x2+x+1在[-1,+∞)上单调递增,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|(x-1)(x+1)<0},B={x|b-a<x<2+a}.若“a=1”是“A∩B≠∅“的充要条件,则b的取值范围可以是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列各点的位置关系,并给出证明:
(1)A(1,2),B(-3,-4),C(2,3.5)
(2)E(9,1),F(1,-3),G(8,0.5)
(3)P(-1,2),Q(0.5,0),R(5,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log9(9x+1)+kx(k∈R)是偶函数
(Ⅰ)求实数k的值;
(Ⅱ)设g(x)=
1
2
x+m(m∈R),问是否存在实数m,使得函数f(x)的图象恒在函数g(x)的图象上方?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案