3.为了对某班学生的数学、物理成绩进行分析,从该班25位男同学,15位女同学中随机抽取一个容量为8的样本.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式,不必计算出结果);
(2)若这8人的数学成绩从小到大排序是65,68,72,79,81,88,92,95.物理成绩从小到大排序是72,77,80,84,86,90,93,98.
①求这8人中恰有3人数学、物理成绩均在85分以上的概率(结果用分数表示);
②已知随机抽取的8人的数学成绩和物理成绩如表:
| 学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 数学成绩 | 65 | 68 | 72 | 79 | 81 | 88 | 92 | 95 |
| 物理成绩 | 72 | 77 | 80 | 84 | 86 | 90 | 93 | 98 |
若以数学成绩为解释变量x,物理成绩为预报变量y,求y关于x的线性回归方程(系数精确到0.01);并求数学成绩对于物理成绩的贡献率R
2(精确到0.01).
参考公式:相关系数:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,R
2=r
2,
回归方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$
参考数据:$\overline{x}$=80,$\overline{y}$=85,$\sum_{i=1}^{8}$(x
i-$\overline{x}$)
2=868,$\sum_{i=1}^{8}$(y
i-$\overline{y}$)
2═518,$\sum_{i=1}^{8}$(x
i-$\overline{x}$)(y
i-$\overline{y}$)=664,$\sqrt{868}$≈29.5,$\sqrt{518}$≈22.8.