精英家教网 > 高中数学 > 题目详情
20.若实数x,y满足不等式组$\left\{\begin{array}{l}2x-y≥2\\ x+y≤4\\ y≥-1\end{array}\right.$,目标函数z=x+2y,则z的取值范围为$[{-\frac{3}{2},6}]$.

分析 由约束条件作出可行域,数形结合得到最优解,把最优解的坐标代入目标函数即可求得k值.

解答 解:由不等式组$\left\{\begin{array}{l}2x-y≥2\\ x+y≤4\\ y≥-1\end{array}\right.$,约束条件作出可行域如图:

B($\frac{1}{2}$,-1),A(2,2),
由z=x+2y得:y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
显然直线过B($\frac{1}{2}$,-1)时,z最小,z的最小值是-$\frac{3}{2}$,
直线过A(2,2)时,z最大,z的最大值是6,
故答案为:$[{-\frac{3}{2},6}]$.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知tan(α-β)=4,tan(α+β)=1,则tan2β=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已经cos(2θ-3π)=$\frac{7}{25}$,且θ是第四象限角,
(1)求cosθ和sinθ的值;
(2)求$\frac{{cos(\frac{π}{2}-θ)}}{tanθ[cos(π+θ)-1]}$+$\frac{{sin(θ-\frac{3π}{2})}}{tan(π-θ)cos(-θ)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某四面体三视图如图所示,该四面体的体积为(  )
A.8B.10C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知偶函数f(x)是定义在{x∈R|x≠0}上的可导函数,其导函数为f'(x).当x<0时,$f'(x)<\frac{f(x)}{x}$恒成立.设m>1,记$a=\frac{4mf(m+1)}{m+1}$,$b=2\sqrt{m}f(2\sqrt{m})$,$c=(m+1)f(\frac{4m}{m+1})$,则a,b,c的大小关系为(  )
A.a<b<cB.a>b>cC.b<a<cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△abc中,三边之比a:b:c=2:3:4,则$\frac{sinA-2sinB}{sinC}$=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=ln(2x+1)-$\frac{3}{x}$在下列区间上单调递增的是(  )
A.(-$\frac{1}{2}$,+∞)B.($\frac{-3+\sqrt{3}}{2}$,+∞)C.($\frac{-3+\sqrt{3}}{2}$,$\frac{1}{2}$)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:x>y>0,则-x<-y,q:若x>y,则x2>y2.在下列四个命题:p∧q,p∨q,p∧?q,(?p)∨q中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设变量x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ 2x+y-2≤0\\ y+2≥0\end{array}\right.$,则目标函数z=|x+3y|的最大值为(  )
A.4B.6C.8D.10

查看答案和解析>>

同步练习册答案