精英家教网 > 高中数学 > 题目详情
15.已知偶函数f(x)是定义在{x∈R|x≠0}上的可导函数,其导函数为f'(x).当x<0时,$f'(x)<\frac{f(x)}{x}$恒成立.设m>1,记$a=\frac{4mf(m+1)}{m+1}$,$b=2\sqrt{m}f(2\sqrt{m})$,$c=(m+1)f(\frac{4m}{m+1})$,则a,b,c的大小关系为(  )
A.a<b<cB.a>b>cC.b<a<cD.b>a>c

分析 构造函数g(x),求出g(x)的奇偶性和单调性,根据函数单调性的性质判断a,b,c的大小即可.

解答 解:令g(x)=$\frac{f(x)}{x}$(x≠0),则g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
因为当x<0时f′(x)<$\frac{f(x)}{x}$恒成立,
所以当x<0时xf′(x)-f(x)>0,
即当x<0时g′(x)>0,所以g(x)在(-∞,0)上单调递增,
又因为f(-x)=f(x),
所以g(-x)=$\frac{f(-x)}{-x}$=-$\frac{f(x)}{x}$=-g(x),即g(x)是奇函数,
所以g(x)在(0,+∞)单调递增,
又因为m+1>2$\sqrt{m}$>$\frac{4m}{m+1}$,
所以g(m+1)>g(2$\sqrt{m}$)>g($\frac{4m}{m+1}$),
所以$\frac{f(m+1)}{m+1}$>$\frac{f(2\sqrt{m})}{2\sqrt{m}}$>$\frac{f(\frac{4m}{m+1})}{\frac{4m}{m+1}}$,即a>b>c,
故选:B.

点评 本题考查了函数的奇偶性和单调性问题,构造函数g(x)是解题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是什么?并求出该轨迹的焦点和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知某几何体的三视图如图所示,则该几何体的表面积为 (  )       
A.12B.8+2$\sqrt{3}$C.12+2$\sqrt{3}$D.12+4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了对某班学生的数学、物理成绩进行分析,从该班25位男同学,15位女同学中随机抽取一个容量为8的样本.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式,不必计算出结果);
(2)若这8人的数学成绩从小到大排序是65,68,72,79,81,88,92,95.物理成绩从小到大排序是72,77,80,84,86,90,93,98.
①求这8人中恰有3人数学、物理成绩均在85分以上的概率(结果用分数表示);
②已知随机抽取的8人的数学成绩和物理成绩如表:
学生编号12345678
数学成绩6568727981889295
物理成绩7277808486909398
若以数学成绩为解释变量x,物理成绩为预报变量y,求y关于x的线性回归方程(系数精确到0.01);并求数学成绩对于物理成绩的贡献率R2(精确到0.01).
参考公式:相关系数:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,R2=r2
回归方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$
参考数据:$\overline{x}$=80,$\overline{y}$=85,$\sum_{i=1}^{8}$(xi-$\overline{x}$)2=868,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2═518,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)=664,$\sqrt{868}$≈29.5,$\sqrt{518}$≈22.8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数$f(x)=\frac{2^x}{{{2^x}+\sqrt{2}}}$,则f(-2016)+f(-2015)+…+f(0)+f(1)+…f(2017)=2017.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若实数x,y满足不等式组$\left\{\begin{array}{l}2x-y≥2\\ x+y≤4\\ y≥-1\end{array}\right.$,目标函数z=x+2y,则z的取值范围为$[{-\frac{3}{2},6}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求关于x的不等式ax2-(a+1)x+1<0(a>0)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是某个几何体的三视图,则该几何体的体积是(  )
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=1+lnx-$\frac{k(x-2)}{x}$,其中k为常数.
(1)若k=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若k=5,求f(x)零点的个数;
(3)若k为整数,且当x>2时,f(x)>0恒成立,求k的最大值.(参考数据ln8=2.08,ln9=2.20,ln10=2.30)

查看答案和解析>>

同步练习册答案