分析 计算f(x)+f(1-x)=1,再令所求和为S,由倒序相加求和,计算即可得到所求和.
解答 解:函数$f(x)=\frac{2^x}{{{2^x}+\sqrt{2}}}$,
可得f(x)+f(1-x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$+$\frac{{2}^{1-x}}{{2}^{1-x}+\sqrt{2}}$
=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$+$\frac{2}{2+\sqrt{2}•{2}^{x}}$=$\frac{{2}^{x}+\sqrt{2}}{\sqrt{2}+{2}^{x}}$=1.
即有S=f(-2016)+f(-2015)+…+f(0)+f(1)+…+f(2017),
S=f(2017)+f(2016)+…+f(1)+f(0)+…+f(-2016),
两式相加可得,2S=[f(-2016)+f(2017)]+[f(-2015)+f(2016)]+…
+[f(0)+f(1)]+[f(1)+f(0)]+…+[f(2017)+f(-2016)]=1+1+…+1
=1×2×2017,
解得S=2017.
故答案为:2017.
点评 本题考查函数值的和的求法,注意运用倒序相加法,求出f(x)+f(1-x)=1是解题的关键,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\{k\left|{k>\frac{{\sqrt{6}}}{3}}\right.或k<-\frac{{\sqrt{6}}}{3}\}$ | B. | $\{k\left|{-\frac{{\sqrt{6}}}{3}<k<\frac{{\sqrt{6}}}{3}}\right.\}$ | C. | $\{k\left|{k≥\frac{{\sqrt{6}}}{3}}\right.或k≤-\frac{{\sqrt{6}}}{3}\}$ | D. | $\{k\left|{-\frac{{\sqrt{6}}}{3}≤k≤\frac{{\sqrt{6}}}{3}}\right.\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a>b>c | C. | b<a<c | D. | b>a>c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b<c<a | B. | a<b<c | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com