精英家教网 > 高中数学 > 题目详情
7.求关于x的不等式ax2-(a+1)x+1<0(a>0)的解集.

分析 把不等式化为(ax-1)(x-1)<0,求出不等式对应方程的根,再讨论a的值,写出不等式的解集.

解答 解:不等式ax2-(a+1)x+1<0
可化为(ax-1)(x-1)<0,
由a>0知,
不等式对应一元二次方程的根为1和$\frac{1}{a}$;…4分
(1)当$\frac{1}{a}$=1,即a=1时,不等式的解集为∅;…6分
(2)当$\frac{1}{a}$>1,即0<a<1时,不等式的解集为(1,$\frac{1}{a}$);…8分
(3)当$\frac{1}{a}$<1,即a>1时,不等式的解集为($\frac{1}{a}$,1).…10分

点评 本题考查了含有字母系数的不等式的解法与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥O-ABC中,AO⊥平面OBC,且OA=OB=OC=2,∠BOC=60°,点E,F分别是AB,AC的中点,H为EF的中点,过EF的动平面与线段OA交于点A1,与线段OB,OC的延长线分别相交于点B1,C1
(Ⅰ)证明:B1C1⊥平面OAH;
(Ⅱ)当|BB1|=2|OA1|-2时,求二面角A-A1E-F的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.扇形AOB的中心角为2θ,θ∈(0,$\frac{π}{2}$),半径为r,在扇形AOB中作内切圆O1与圆O1外切,与OA,OB相切的圆O2,问sinθ为何值时,圆O2的面积最大?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知偶函数f(x)是定义在{x∈R|x≠0}上的可导函数,其导函数为f'(x).当x<0时,$f'(x)<\frac{f(x)}{x}$恒成立.设m>1,记$a=\frac{4mf(m+1)}{m+1}$,$b=2\sqrt{m}f(2\sqrt{m})$,$c=(m+1)f(\frac{4m}{m+1})$,则a,b,c的大小关系为(  )
A.a<b<cB.a>b>cC.b<a<cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知 a=${4}^{\frac{2}{3}}$,b=${3}^{\frac{2}{3}}$,${c=25}^{\frac{1}{3}}$,则(  )
A.b<c<aB.a<b<cC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=ln(2x+1)-$\frac{3}{x}$在下列区间上单调递增的是(  )
A.(-$\frac{1}{2}$,+∞)B.($\frac{-3+\sqrt{3}}{2}$,+∞)C.($\frac{-3+\sqrt{3}}{2}$,$\frac{1}{2}$)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=xlnx
(1)当x∈(0,e](e是自然常数)时求f(x)的极小值;
(2)求f(x)在点(e,f(e))(e是自然常数)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知球O的表面积为25π,长方体的八个顶点都在球O的球面上,则这个长方体的表面积的最大值为(  )
A.50B.100C.50πD.100π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.判断下列命题是全称命题还是特称命题,并用符号“?”或“?”表示下列命题.
(1)自然数的平方大于或等于零;
(2)圆x2+y2=1上存在一个点到直线y=x+1的距离等于圆的半径;
(3)有的函数既是奇函数又是增函数;
(4)对于数列{$\frac{n}{n+1}$},总存在正整数n0,使得a${\;}_{{n}_{0}}$与1之差的绝对值小于0.01.

查看答案和解析>>

同步练习册答案