精英家教网 > 高中数学 > 题目详情
12.函数f(x)=ln(2x+1)-$\frac{3}{x}$在下列区间上单调递增的是(  )
A.(-$\frac{1}{2}$,+∞)B.($\frac{-3+\sqrt{3}}{2}$,+∞)C.($\frac{-3+\sqrt{3}}{2}$,$\frac{1}{2}$)D.(0,+∞)

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.

解答 解:函数f(x)的定义域是(-$\frac{1}{2}$,0)∪(0,+∞),
f′(x)=$\frac{2}{2x+1}$+$\frac{3}{{x}^{2}}$=$\frac{{2x}^{2}+6x+3}{{x}^{2}(2x+1)}$,
令f′(x)>0,即2x2+6x+3>0,
解得:x>$\frac{-3+\sqrt{3}}{2}$或x<$\frac{-3-\sqrt{3}}{2}$(舍),
结合函数的单调性求出函数在(0,+∞)递增,
故选:D.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知数集A中有n个元素,其中有一个为0.现从A中任取两个元素x,y组成有序实数对(x,y).在平面直角坐标系中,若(x,y)对应的点中不在坐标轴上的共有56个,则n的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了对某班学生的数学、物理成绩进行分析,从该班25位男同学,15位女同学中随机抽取一个容量为8的样本.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式,不必计算出结果);
(2)若这8人的数学成绩从小到大排序是65,68,72,79,81,88,92,95.物理成绩从小到大排序是72,77,80,84,86,90,93,98.
①求这8人中恰有3人数学、物理成绩均在85分以上的概率(结果用分数表示);
②已知随机抽取的8人的数学成绩和物理成绩如表:
学生编号12345678
数学成绩6568727981889295
物理成绩7277808486909398
若以数学成绩为解释变量x,物理成绩为预报变量y,求y关于x的线性回归方程(系数精确到0.01);并求数学成绩对于物理成绩的贡献率R2(精确到0.01).
参考公式:相关系数:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,R2=r2
回归方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$
参考数据:$\overline{x}$=80,$\overline{y}$=85,$\sum_{i=1}^{8}$(xi-$\overline{x}$)2=868,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2═518,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)=664,$\sqrt{868}$≈29.5,$\sqrt{518}$≈22.8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若实数x,y满足不等式组$\left\{\begin{array}{l}2x-y≥2\\ x+y≤4\\ y≥-1\end{array}\right.$,目标函数z=x+2y,则z的取值范围为$[{-\frac{3}{2},6}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求关于x的不等式ax2-(a+1)x+1<0(a>0)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若复数z=a+bi(a,b∈R,i为虚数单位)满足z2=-1,则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是某个几何体的三视图,则该几何体的体积是(  )
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在对吸烟与患肺病转这两个分类变量的独立性减压中,下列说法真确的是(  )
①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系;
②若K2的观测值满足K2≥6.635,那么在100个吸烟的人中有99人患肺病;
③动独立性检验可知,如果有99%的把握认为吸烟与患肺病有关系时,那么我们就认为:每个吸烟的人有99%的可能性会患肺病;
④从统计量中得到由99%的把握认为吸烟与患肺病有关系时,是指有1%的可能性使判断出现错误.
A.B.②③C.①④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1有共同的渐近线,且过点P(8,12)的双曲线方程为$\frac{{y}^{2}}{108}-\frac{{x}^{2}}{192}=1$.

查看答案和解析>>

同步练习册答案