精英家教网 > 高中数学 > 题目详情
11.已经cos(2θ-3π)=$\frac{7}{25}$,且θ是第四象限角,
(1)求cosθ和sinθ的值;
(2)求$\frac{{cos(\frac{π}{2}-θ)}}{tanθ[cos(π+θ)-1]}$+$\frac{{sin(θ-\frac{3π}{2})}}{tan(π-θ)cos(-θ)}$的值.

分析 (1)(2)利用诱导公式和同角三角函数关系式化简即可求解.

解答 解:由cos(2θ-3π)=cos(-π+2θ)=-cos2θ=$\frac{7}{25}$,即cos2θ=1-2sin2θ=$-\frac{7}{25}$,
(1)∵θ是第四象限角,
∴sinθ=-$\frac{4}{5}$.
∵cos2θ=2cos2θ-1=$-\frac{7}{25}$
∵θ是第四象限角,
∴cosθ=$\frac{3}{5}$.
(2)由$\frac{{cos(\frac{π}{2}-θ)}}{tanθ[cos(π+θ)-1]}$+$\frac{{sin(θ-\frac{3π}{2})}}{tan(π-θ)cos(-θ)}$=$\frac{sinθ}{-tanθ•cosθ-tanθ}-\frac{cosθ}{tanθ•cosθ}$=$\frac{sinθ}{-sinθ-\frac{sinθ}{cosθ}}-\frac{cosθ}{sinθ}$=$\frac{cosθ}{-1-cosθ}-\frac{cosθ}{sinθ}$=$\frac{-\frac{3}{5}}{-1-\frac{3}{5}}+\frac{\frac{3}{5}}{\frac{4}{5}}$=$\frac{8}{9}$.

点评 本题考查了诱导公式和同角三角函数关系式化简和计算能力.属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在△ABC中,$AB=\sqrt{3},A={45°},C={105°}$,则BC=(  )
A.2B.$\sqrt{2}$C.$3-\sqrt{3}$D.$3+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数集A中有n个元素,其中有一个为0.现从A中任取两个元素x,y组成有序实数对(x,y).在平面直角坐标系中,若(x,y)对应的点中不在坐标轴上的共有56个,则n的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow m,\overrightarrow n$分别是直线l的方向向量和平面α的法向量,若$cos\left?{\overrightarrow m,\left.{\overrightarrow n}\right>}\right.=-\frac{1}{2}$,则l与α所成的角为(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知某几何体的三视图如图所示,则该几何体的表面积为 (  )       
A.12B.8+2$\sqrt{3}$C.12+2$\sqrt{3}$D.12+4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知实数x满足32x-4-$\frac{10}{3}$•3x-1+9≤0,且$f(x)={log_2}\frac{x}{2}•{log_2}\frac{{\sqrt{x}}}{2}$.
(1)求实数x的取值范围;
(2)求f(x)的最大值和最小值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了对某班学生的数学、物理成绩进行分析,从该班25位男同学,15位女同学中随机抽取一个容量为8的样本.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式,不必计算出结果);
(2)若这8人的数学成绩从小到大排序是65,68,72,79,81,88,92,95.物理成绩从小到大排序是72,77,80,84,86,90,93,98.
①求这8人中恰有3人数学、物理成绩均在85分以上的概率(结果用分数表示);
②已知随机抽取的8人的数学成绩和物理成绩如表:
学生编号12345678
数学成绩6568727981889295
物理成绩7277808486909398
若以数学成绩为解释变量x,物理成绩为预报变量y,求y关于x的线性回归方程(系数精确到0.01);并求数学成绩对于物理成绩的贡献率R2(精确到0.01).
参考公式:相关系数:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,R2=r2
回归方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$
参考数据:$\overline{x}$=80,$\overline{y}$=85,$\sum_{i=1}^{8}$(xi-$\overline{x}$)2=868,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2═518,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)=664,$\sqrt{868}$≈29.5,$\sqrt{518}$≈22.8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若实数x,y满足不等式组$\left\{\begin{array}{l}2x-y≥2\\ x+y≤4\\ y≥-1\end{array}\right.$,目标函数z=x+2y,则z的取值范围为$[{-\frac{3}{2},6}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在对吸烟与患肺病转这两个分类变量的独立性减压中,下列说法真确的是(  )
①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系;
②若K2的观测值满足K2≥6.635,那么在100个吸烟的人中有99人患肺病;
③动独立性检验可知,如果有99%的把握认为吸烟与患肺病有关系时,那么我们就认为:每个吸烟的人有99%的可能性会患肺病;
④从统计量中得到由99%的把握认为吸烟与患肺病有关系时,是指有1%的可能性使判断出现错误.
A.B.②③C.①④D.①②③④

查看答案和解析>>

同步练习册答案