分析 由已知数列递推式可得Sn-1=3an(n≥2),与圆递推式作差可得数列{an}从第二项起,是以${a}_{2}=\frac{1}{3}$为首项,以$\frac{4}{3}$为公比的等比数列,则Sn可求.
解答 解:由Sn=3an+1,得
Sn-1=3an(n≥2),
两式作差得:an=3an+1-3an,即$\frac{{a}_{n+1}}{{a}_{n}}=\frac{4}{3}$(n≥2).
又a1=1,a1=S1=3a2,得${a}_{2}=\frac{1}{3}$.
∴数列{an}从第二项起,是以${a}_{2}=\frac{1}{3}$为首项,以$\frac{4}{3}$为公比的等比数列.
则S1=a1=1,当n≥2时,${S}_{n}=1+\frac{\frac{1}{3}[1-(\frac{4}{3})^{n-1}]}{1-\frac{4}{3}}=(\frac{4}{3})^{n-1}$.
已知S1适合上式,
∴${S}_{n}=(\frac{4}{3})^{n-1}$.
故答案为:${(\frac{4}{3})^{n-1}}$.
点评 本题考查数列递推式,考查了等比关系的确定,训练了等比数列前n项和公式的应用,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A>B | B. | sin2A>sin2B | C. | cos2A<cos2B | D. | a>b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x=$\frac{kπ}{2}$+$\frac{π}{8}$,k∈Z} | B. | {x|x=kπ+$\frac{π}{8}$,k∈Z} | C. | {x|x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z} | D. | {x|x=kπ+$\frac{π}{4}$,k∈Z} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com