精英家教网 > 高中数学 > 题目详情
1.两圆C1:x2+y2-4x+3=0和C2:${x^2}+{y^2}+4\sqrt{3}y+3=0$的位置关系是(  )
A.相离B.相交C.内切D.外切

分析 根据两圆的圆心距与两个圆的半径和的关系,可得两圆的位置关系.

解答 解:由题意可得,圆C2:x2+y2-4x+3=0可化为(x-2)2+y2=1,
C2:${x^2}+{y^2}+4\sqrt{3}y+3=0$的x2+(y+2$\sqrt{3}$)2=9
两圆的圆心距C1C2=$\sqrt{({2-0)}^{2}+(0-2\sqrt{3})^{2}}$=4=1+3,
∴两圆相外切.
故选:D.

点评 本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若f(x)=$\frac{1}{{x}^{2}-2ax+a+5}$在(-2,2)上单调递增,则a的取值范围是[2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设α,β是两个不同的平面,直线m⊥α,则“m⊥β”是“α∥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}与{bn}满足an+1-an=2(bn+1-bn)(n∈N*).
(1)若a1=1,bn=3n+5,求数列{an}的通项公式;
(2)若a1=6,bn=2n(n∈N*)且λan>2n+n+2λ对一切n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设{an}是公比为q的等比数列.
(Ⅰ)推导{an}的前n项和Sn公式;
(Ⅱ)设q≠1,证明数列$\left\{{\frac{S_n}{n}}\right\}$不是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系xOy中,已知圆C:(x-3)2+y2=4,点A,B在圆C上,且$|{AB}|=2\sqrt{3}$,则$|{\overrightarrow{OA}+\overrightarrow{OB}}|$的最大值是(  )
A.8B.$4\sqrt{2}$C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在正方体ABCD-A1B1C1D1中,点P、Q分别是B1C1、CC1的中点,则直线A1P与DQ的位置关系是相交.(填“平行”、“相交”或“异面”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)有两个零点-3和1,且有最小值-4.
(Ⅰ) 求f(x)的解析式;
(Ⅱ) 令g(x)=mf(x)+1(m≠0).
①若m<0,证明:g(x)在[-3,+∞)上有唯一零点;
②若m>0,求y=|g(x)|在$[{-3,\frac{3}{2}}]$上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知四棱锥P-ABCD的底面是平行四边形,如图,M是PC的中点,问向量$\overrightarrow{PA}$、$\overrightarrow{MB}$、$\overrightarrow{MD}$是否可以组成一个基底,并说明理由.

查看答案和解析>>

同步练习册答案