分析 先利用同角三角函数关系式分别求出sinα、cosβ,再由两角差余弦函数公式能求出β-α的值.
解答 解:∵0<α<β<$\frac{π}{2}$,且cosα=$\frac{2\sqrt{5}}{5}$,sinβ=$\frac{3\sqrt{10}}{10}$,
∴0<β-α<$\frac{π}{2}$,
∴$sinα=\sqrt{1-(\frac{2\sqrt{5}}{5})^{2}}$=$\frac{\sqrt{5}}{5}$,cosβ=$\sqrt{1-(\frac{3\sqrt{10}}{10})^{2}}$=$\frac{\sqrt{10}}{10}$,
∴cos(β-α)=cosαcosβ+sinαsinβ
=$\frac{2\sqrt{5}}{5}×\frac{\sqrt{10}}{10}+\frac{\sqrt{5}}{5}×\frac{3\sqrt{10}}{10}$
=$\frac{\sqrt{2}}{2}$,
∴β-α=$\frac{π}{4}$.
点评 本题考查两角差的求法,是中档题,解题时要认真审题,注意同角三角函数关系式和两角差余弦函数公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$-1 | D. | $\frac{π}{4}$-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | -3 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {1,2} | C. | {1,2,3} | D. | {1,2,3,4} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com