精英家教网 > 高中数学 > 题目详情
18.已知圆O1:x2+y2=4,圆O2:x2+(y-b)2=1.如果两个圆有且只有一个公共点,那么实数b的取值集合是{1,3}.

分析 两个圆有且只有一个公共点,两个圆内切或外切,分别求出b,即可得出结论.

解答 解:∵两个圆有且只有一个公共点,
∴两个圆内切或外切,
内切时,b=1,外切时,b=3,
∴实数b的取值集合是{1,3}.
故答案为:{1,3}.

点评 本题考查圆与圆的位置关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.直线l在两坐标轴上的截相等,且点M(1,-1)到直线l的距离为$\sqrt{2}$,则直线l方程为x-y=0或x+y-2=0或x+y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知A={y|y=cosx,x∈R},B={y|y=2x,x∈R},A∩B=(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,若$\frac{tanA}{tanB}$=$\frac{si{n}^{2}A}{si{n}^{2}B}$,则△ABC为(  )
A.等腰三角形B.直角三角形
C.等腰或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的方程为x2+ay2=1(a∈R).
(1)当a=-$\frac{1}{3}$时,是否存在以M(1,1)为中点的弦,若存在,求出弦所在直线的方程;若不得在,请说明理由;
(2)讨论曲线C所表示的轨迹形状;
(3)若a≠-1时,直线y=x-1与曲线C相交于两点M,N,且|MN|=$\sqrt{2}$,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四面体ABCD被一平面所截,截面EFHG是一个平行四边形.求证:CD∥GH.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知0<α<β<$\frac{π}{2}$,且cosα=$\frac{2\sqrt{5}}{5}$,sinβ=$\frac{3\sqrt{10}}{10}$,求β-α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=cos2x+2$\sqrt{3}$sinxcosx,则f($\frac{π}{12}$)=(  )
A.$\sqrt{3}$B.$-\sqrt{3}$C.$\frac{3}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),0<α<β<π.
(Ⅰ)若|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{2}$,求证$\overrightarrow a$⊥$\overrightarrow b$;
(Ⅱ)设$\overrightarrow c$=(0,1),若$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow c$,求α,β的值.

查看答案和解析>>

同步练习册答案