精英家教网 > 高中数学 > 题目详情
3.定义:若对定义域D内的任意两个x1,x2(x1≠x2),均有|f(x1)-f(x2)|<|x1-x2|成立,则称函数y=f(x)是D上的“平缓函数”.则以下说法正确的有(  )
①f(x)=-lnx+x为(0,+∞)上的“平缓函数”;
②g(x)=sinx为R上的“平缓函数”
③h(x)=x2-x是为R上的“平缓函数”;
④已知函数y=k(x)为R上的“平缓函数”,若数列{xn}对?n∈N*总有|xn+1-xn|≤$\frac{1}{{{{(2n+1)}^2}}},则|{k({x_{n+1}})-k({x_1})}|<\frac{1}{4}$.
A.0个B.1个C.2个D.3个

分析 对于①②③新定义函数类型的题目,解答时要先充分理解定义:“平缓函数”才能答题,对于(1)只需按照定义作差:|f(x1)-f(x2)|,然后寻求|f(x2)-f(x1)|≤|x2-x1|成立的条件.
对于④的解答稍微复杂一些,此处除了用到放缩外,还有添项减项的技巧应用及对数列拆项求和的充分利用.

解答 解:对于①|f(x1)-f(x2)|=|-lnx1+x1-(-lnx2+x2)|=|ln$\frac{{x}_{2}}{{x}_{1}}$+x1-x2|≤|ln$\frac{{x}_{2}}{{x}_{1}}$|+|x1-x2|,故均有|f(x1)-f(x2)|<|x1-x2|不一定成立,
故f(x)=-lnx+x不为(0,+∞)上的“平缓函数”,故①错误;
对于②设φ(x)=x-sinx,则φ'(x)=1-cosx≥0,则φ(x)=x-sinx是实数集R上的增函数,
不妨设x1<x2,则φ(x1)<φ(x2),即x1-sinx1<x2-sinx2
则sinx2-sinx1<x2-x1,①
又y=x+sinx也是R上的增函数,则x1+sinx1<x2+sinx2
即sinx2-sinx1>x1-x2,②
由  ①、②得-(x2-x1)<sinx2-sinx1<x2-x1
因此|sinx2-sinx1|<|x2-x1|,对x1<x2的实数都成立,
当x1>x2时,同理有|sinx2-sinx1|<|x2-x1|成立
又当x1=x2时,不等式|sinx2-sinx1|=|x2-x1|=0,
故对任意的实数x1,x2∈R均 有|sinx2-sinx1|≤|x2-x1|
因此 sinx是R上的“平缓函数,故②正确
对于③取x1=3,x2=1,则|h(x1)-h(x2)|=4>|x1-x2|,因此h(x)=x2-x不是R上的“平缓函数”,故③错误,
对于④函数y=k(x)为R上的“平缓函数,
则|k(x2)-k(x1)|≤|x2-x1|,所以|yn+1-yn|≤|xn+1-xn|,
因为|xn+1-xn|≤$\frac{1}{(2n+1)^{2}}$<$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
而|yn+1-y1|=|(yn+1-yn)+(yn-yn-1)+(yn-1-yn-2)+…(y2-y1)|
所以|yn+1-y1|≤|yn+1-yn|+|yn-1-yn-2|+…+|y2-y1|,
∴|yn+1-y1|≤$\frac{1}{4}$[($\frac{1}{n}$-$\frac{1}{n+1}$)+($\frac{1}{n-1}$-$\frac{1}{n}$)+…+(1-$\frac{1}{2}$)]=$\frac{1}{4}$(1-$\frac{1}{n+1}$)<$\frac{1}{4}$,故④正确.
故选:C.

点评 本题抽象函数、新定义函数类型的概念,不等式的性质,放缩法的技巧,对于新定义类型问题,在解答时要先充分理解定义才能答题,避免盲目下笔,遇到困难才来重头读题,费时费力,另外要在充分抓住定义的基础上,对式子的处理要灵活,各个式子的内在联系要充分挖掘出来,可现有结论向上追溯,看看需要哪些条件才能得出结果,再来寻求转化取得这些条件

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.光线自点A(-3,3)射出,经x轴反射后经过点B(2,5),求光线自点A到B所经过的路程长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为$\sqrt{3}$,则C的焦距等于(  )
A.2B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知定义在R上的函数f(x),g(x)满足$\frac{f(x)}{g(x)}$=ax,f′(x)g(x)<f(x)g′(x),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,若有穷数列{$\frac{f(n)}{g(n)}$}(n∈N)的前n项和等于$\frac{63}{64}$,则n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ln|x|-x2+ax,其中a∈R.
(1)当a=1时,求函数的单调增区间.
(2)l为f(x)在x=x0处的切线,且f(x)图象上的点都不在l的上方,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C的圆心在直线y=x-2上
(Ⅰ)若圆经过A(3,-2)和B(0,-5)两点.
(i)求圆C的方程;
(ii)设圆C与y轴另一交点为P,直线l过点P且与圆C相切.设D是圆C上异于P,B的动点,直线BD与直线l交于点R.试判断以PR为直径的圆与直线CD的位置关系,并说明理由;
(Ⅱ)设点M(0,3),若圆C半径为3,且圆C上存在点N,使|MN|=2|NO|,求圆心C的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一种智能手机电子阅读器,特别设置了一个“健康阅读”按钮,在开始阅读或者阅读期间的任意时刻按下“健康阅读”按钮后,手机阅读界面的背景会变为蓝色或绿色以保护阅读者的视力.假设“健康阅读”按钮第一次按下后,出现蓝色背景与绿色背景的概率都是$\frac{1}{2}$.从按钮第二次按下起,若前次出现蓝色背景,则下一次出现蓝色背景、绿色背景的概率分别为$\frac{1}{3}$、$\frac{2}{3}$;若前次出现绿色背景,则下一次出现蓝色背景、绿色背景的概率分别为$\frac{3}{5}$、$\frac{2}{5}$.记第n(n∈N,n≥1)次按下“健康阅读”按钮后出现蓝色背景概率为Pn
(Ⅰ)求P2的值;
(Ⅱ)当n∈N,n≥2时,试用Pn-1表示Pn
(Ⅲ)求Pn关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设三次函数f(x)=ax3+bx2+cx+1的导函数f′(x)=3ax(x-1),且a>2,则函数f(x)的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$\frac{\overline z}{i}$=2-i,则在复平面内,复数z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案