精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数g(x)=Acos(φx+ω)图象的一个对称中心可能为(  )
A.$(-\frac{5}{2},0)$B.$(\frac{1}{6},0)$C.$(-\frac{1}{2},0)$D.$(-\frac{11}{6},0)$

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得g(x)的解析式,再利用正弦函数的图象的对称性,求得函数g(x)=Acos(φx+ω)图象的一个对称中心.

解答 解:根据函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,
可得A=2$\sqrt{3}$,$\frac{2π}{ω}$=2(6+2),∴ω=$\frac{π}{8}$.
再根据五点法作图可得$\frac{π}{8}$•6+φ=π,∴φ=$\frac{π}{4}$,∴f(x)=2$\sqrt{3}$sin($\frac{π}{8}$x+$\frac{π}{4}$).
则函数g(x)=Acos(φx+ω)=2$\sqrt{3}$cos($\frac{π}{4}$x+$\frac{π}{8}$)图象的一个对称中心可能(-$\frac{1}{2}$,0),
故选:C.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在底面ABCD为平行四边形的四棱柱ABCD-A1B1C1D1中,M是AC与BD的交点,若$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{{A_1}{D_1}}$=$\overrightarrow b$,$\overrightarrow{{A_1}A}$=$\overrightarrow c$,则下列向量中与$\overrightarrow{{B_1}M}$相等的向量是(  )
A.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$B.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$D.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将函数$f(x)=2sin(\frac{x}{3}-\frac{π}{6})$的图象向左平移$\frac{π}{4}$个单位,再向上平移2个单位,得到函数g(x)的图象,则g(x)的解析式为(  )
A.$g(x)=2sin(\frac{x}{3}-\frac{π}{4})-2$B.$g(x)=2sin(\frac{x}{3}+\frac{π}{4})+2$C.$g(x)=2sin(\frac{x}{3}-\frac{π}{12})+2$D.$g(x)=2sin(\frac{x}{3}-\frac{π}{12})-2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足不等式组$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$且z=2x-y的最大值为a,则$\int_0^π{a{{cos}^2}}\frac{x}{2}dx$=3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x∈N|-2<x<4},$B=\{x|\frac{1}{2}≤{2^x}≤4\}$,则A∩B=(  )
A.{x|-1≤x≤2}B.{-1,0,1,2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线C:y2=4x的焦点是F,直线l1:y=x-1交抛物线于A,B两点,分别从A,B两点向直线l2:x=-2作垂线,垂足是D,C,则四边形ABCD的周长为$18+4\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.”意思是:“现有一根金锤,头部的1尺,重4斤;尾部的1尺,重2斤;且从头到尾,每一尺的重量构成等差数列.”则下列说法错误的是(  )
A.该金锤中间一尺重3斤
B.中间三尺的重量和是头尾两尺重量和的3倍
C.该金锤的重量为15斤
D.该金锤相邻两尺的重量之差的绝对值为0.5斤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点M的极坐标为$(3\sqrt{2},\frac{π}{4})$,圆C的参数方程为$\left\{{\begin{array}{l}{x=1+2cosα}\\{y=2sinα}\end{array}}\right.$(α为参数).
(1)直线l过M且与圆C相切,求直线l的极坐标方程;
(2)过点P(0,m)且斜率为$\sqrt{3}$的直线l'与圆C交于A,B两点,若|PA|•|PB|=6,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线y=lgx在x=1处的切线斜率是(  )
A.$\frac{1}{ln10}$B.ln10C.lneD.$\frac{1}{lne}$

查看答案和解析>>

同步练习册答案