精英家教网 > 高中数学 > 题目详情
11.将函数$f(x)=2sin(\frac{x}{3}-\frac{π}{6})$的图象向左平移$\frac{π}{4}$个单位,再向上平移2个单位,得到函数g(x)的图象,则g(x)的解析式为(  )
A.$g(x)=2sin(\frac{x}{3}-\frac{π}{4})-2$B.$g(x)=2sin(\frac{x}{3}+\frac{π}{4})+2$C.$g(x)=2sin(\frac{x}{3}-\frac{π}{12})+2$D.$g(x)=2sin(\frac{x}{3}-\frac{π}{12})-2$

分析 利用三角函数的平移,自变量和函数值的变化,改变解析式;左加右减,上加下减.

解答 解:根据三角函数图象的平移变换可得,将f(x)的图象向左平移$\frac{π}{4}$个单位得到函数$f(x+\frac{π}{4})$的图象,
再将$f(x+\frac{π}{4})$的图象向上平移2个单位得到函数$f(x+\frac{π}{4})+2$的图象,
因此g(x)=$f(x+\frac{π}{4})+2$=$2sin[\frac{1}{3}(x+\frac{π}{4})-\frac{π}{6}]+2=2sin(\frac{x}{3}-\frac{π}{12})+2$.
故选C.

点评 本题考查了三角函数的图象平移;记作平移规律是解答的关键;即:左加右减,上加下减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.计算题
(1)$\frac{1-2i}{3+4i}$
(2)设复数z满足i(z-4)=3+2i(i是虚数单位),求z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列$(1+\frac{1}{2})$,$(2+\frac{2}{3})$,$(3+\frac{3}{4})$,$(4+\frac{4}{5})$…的一个通项n+$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知(x-$\sqrt{3}$)2017=a0x2017+a1x2016+a2x2015+…+a2016+a2017,则(a0+a2+…+a20162-(a1+a3+…+a20172的值为-22017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x2-x-2,x∈[-3,3],那么任取一点x0∈[-3,3],使f(x0)≤0的概率是(  )
A.1B.$\frac{1}{2}$C.$\frac{4}{7}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为(  )
A.3π+$\sqrt{3}$B.3π+$\sqrt{3}$+1C.5π+$\sqrt{3}$D.5π+$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线${C_1}:\frac{x^2}{2}-{y^2}=1$与双曲线${C_2}:\frac{x^2}{2}-{y^2}=-1$,给出下列说法,其中错误的是(  )
A.它们的焦距相等B.它们的焦点在同一个圆上
C.它们的渐近线方程相同D.它们的离心率相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数g(x)=Acos(φx+ω)图象的一个对称中心可能为(  )
A.$(-\frac{5}{2},0)$B.$(\frac{1}{6},0)$C.$(-\frac{1}{2},0)$D.$(-\frac{11}{6},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示的“数阵”的特点是:毎行每列都成等差数列,则数字37在图中出现的次数为9.

查看答案和解析>>

同步练习册答案