精英家教网 > 高中数学 > 题目详情
18.求值:cos(x+27°)cos(x-18°)+sin(x+27°)sin(x-18°).

分析 直接利用两角和的余弦函数化简求解即可.

解答 解:cos(x+27°)cos(x-18°)+sin(x+27°)sin(x-18°)
=cos(x+27°-x+18°)
=cos45°
=$\frac{\sqrt{2}}{2}$.

点评 本题考查三角函数的化简求值,两角和与差的三角函数应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=1,当n∈N时,an+1an=an+2.试回答下列问题:
(1)求证数列{$\frac{{a}_{n}-2}{{a}_{n}+1}$}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,已知a4=9,a6+a7=28.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知曲线y=e-x
①若曲线在点P处的切线平行于直线2x+y+1=0,则P点坐标是(-ln2,2);
②若曲线在点P处的切线垂直于直线ex-y+1=0,则P点坐标是(1,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.各项均为正数的等比数列{an}的前n项和为Sn,若$\frac{{S}_{8}}{{S}_{4}}$=$\frac{17}{16}$,则公比q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC的三内角A,B,C满足2B=A+C.则b=2,a+c的取值范围为(2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.利用杨辉三角解不等式${C}_{m}^{4}$>${C}_{m}^{7}$,不等式的解集为{7,8,9,10}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线Г:4x2-$\frac{{y}^{2}}{{a}^{2}}$=1的左右焦点分别为F1,F2,离心率e=2,若动点P满足$\frac{|P{F}_{1}|}{|P{F}_{2}|}$=$\sqrt{2}$,则直线PF1的倾斜角θ的取值范围为(  )
A.[0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π)B.[$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{3π}{4}$,π)C.[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)D.[$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a,b∈R,则“a>1,且b>1”是“a+b>2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案