精英家教网 > 高中数学 > 题目详情

的图象关于直线对称,其中
(1)求的解析式;
(2)将的图象向左平移个单位,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后得到的图象;若函数的图象与的图象有三个交点且交点的横坐标成等比数列,求的值.

(1);(2).

解析试题分析:(1)本题考查了三角函数的对称性,利用通解来求解;(2)由图象变换求得,再利用三交点的横坐标成等比数列求得,因此.此题将数列与三角函数知识联系在一起,在知识的交汇处命题.
试题解析:(1)的图象关于直线对称,
,解得,                2分

                            5分
(2)将的图象向左平移个单位后,提到
,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后,得到
                                9分
函数的图象与的图象有三个交点坐标分别为

则由已知结合图象的对称性,有,解得          11分
.                             12分
考点:1.三角函数解析式的求解;2.函数的对称性;3.三角函数图象的变换;4.等比中项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知分别是的三个内角的对边,.
(Ⅰ)求角的大小;
(Ⅱ)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)求在区间上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中角的顶点与坐标原点重合,始边与轴非负半轴重合,
终边经过点,且.
(1)若点的坐标为,求的值;
(2)若点为平面区域上的一个动点,试确定角的取值范围,并求函数的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为,求f(θ)的值;
(2)若点P(x,y)为平面区域Ω:,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中向量.在中,角A、B、C的对边分别为.
(1)如果三边依次成等比数列,试求角的取值范围及此时函数的值域;
(2) 在中,若,边依次成等差数列,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=-sin(2x-).
(I)求函数f(x)的最大值和最小值;
(Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,c=3,f()=,若,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设,求的值;
(2)已知,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数的最小正周期为.

(Ⅰ)试求的值;
(Ⅱ)在图中作出函数在区间上的图象,并根据图象写出其在区间上的单调递减区间.

查看答案和解析>>

同步练习册答案