精英家教网 > 高中数学 > 题目详情
在△ABC中,tan
A+B
2
=2sinC,若AB=1,则
1
2
AC+BC的最大值为
 
考点:正弦定理,同角三角函数基本关系的运用
专题:解三角形
分析:由已知式子化简变形讨论可得C=
π
3
,再由正弦定理可得
1
2
AC+BC=
1
3
sin(
3
-A)+
2
3
sinA=
1
2
cosA+
5
2
3
sinA,由三角函数的最值可得.
解答: 解:∵在△ABC中,tan
A+B
2
=2sinC,
∴tan(
π
2
-
C
2
)=2sinC,∴
sin(
π
2
-
C
2
)
cos(
π
2
-
C
2
)
=2sinC,
cos
C
2
sin
C
2
=4sin
C
2
cos
C
2
,即cos
C
2
(4sin2
C
2
-1)=0,
解得cos
C
2
=0或4sin2
C
2
-1=0,
∴C=π(舍去),或C=
3
(舍去),或C=
π
3

又∵AB=1,∴
1
sin
π
3
=
AC
sinB
=
BC
sinA

∴AC=
2
3
sinB,BC=
2
3
sinA,又B=
3
-A,
1
2
AC+BC=
1
3
sin(
3
-A)+
2
3
sinA=
1
2
cosA+
5
2
3
sinA,
1
2
AC+BC的最大值为
(
1
2
)2+(
5
2
3
)2
=
21
3

故答案为:
21
3
点评:本题考查解三角形,涉及正弦定理和同角三角函数的基本关系,以及三角函数的化简求最值,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

举例说明,在同一坐标系内.
(1)y=f(x)与x=f-1(y)的图象有什么关系?
(2)y=f(x)与y=f-1(x)的图象有什么关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方形ABCD中,AB=4,BC=1,E为DC的四等分点(靠近C处),F为线段EC上一动点(包括端点),现将△AFD沿AF折起,使D点在平面内的射影恰好落在边AB上,则当F运动时,二面角D-AF-B的平面角余弦值的变化范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=x2-2x+2的图象为C1,函数y=-x2+ax+b的图象为C2,已知过C1和C2的一个交点的两切线互相垂直
(1)求a,b之间的关系;
(2)求ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logax的反函数的图象过点(4,4),则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x-kxα-2(k,α∈R)的图象经过点(1,0),设g(x)=
f(x),x≤0
log2(x+1),x>0
,若g(t)=2,则实数t=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

两名高一年级的学生被允许参加高二年级的学生象棋比赛,每两名参赛选手之间都比赛一次,胜者得1分,和棋各得0.5分,输者得0分,即每场比赛双方的得分之和是1分.两名高一年级的学生共得8分,且每名高二年级的学生都得相同分数,则有
 
名高二年级的学生参加比赛.(结果用数值作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,3),
b
=(-2,4),求:
(1)
a
b
a
b
间的夹角的余弦值;
(2)求(
a
+
b
)•(
a
-
b
),
a
•(
a
+
b
),(
a
+
b
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-mx+m-1.若函数y=|f(x)|在(1,2)上单调递增,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案