精英家教网 > 高中数学 > 题目详情
2.某程序框图如图所示,当输出y的值为-8时,则输出x的值为16

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量x的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:由程序框图知:
第一次循环n=3,x=2,y=-2;
第二次循环n=5,x=4,y=-4;
第三次循环n=7,x=8,y=-6.
第四次循环n=9,x=16,y=-8.
∵输出y值为-8,
∴输出的x=16.
故答案为:16.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知f(x)=$\left\{\begin{array}{l}(3-a)x-a(x<1)\\ lo{g}_{a}x(x≥1)\end{array}\right.$是(-∞,+∞)上的增函数,那么实数a的取值范围是$\frac{3}{2}≤a<3$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面对几何学提出了新的需要.当时德国天文学家开普勒发现许多天体的运行轨道是(  )
A.抛物线B.双曲线C.椭圆D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线C:x2-y2=1,直线y=kx-1交双曲线的左支于A、B两点.
(1)求实数k的取值范围;
(2)如果|AB|=6$\sqrt{3}$,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若变量x,y满足条$\left\{\begin{array}{l}y≥0\\ x+2y≥1\\ x+4y≤3\end{array}\right.$,则z=(x+1)2+y2的最小值是(  )
A.1B.2C.$\frac{{\sqrt{5}}}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.sin(-$\frac{17π}{4}$)-cos(-$\frac{17π}{4}$)的值是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.0D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某企业一天中不同时刻的用电量y(万千瓦时)关于时间t(小时,0≤t≤24)的函数y=f(t)近似满足f(t)=Asin(ωt+φ)+B,(A>0,ω>0,0<φ<π).如图是函数y=f(t)的部分图象(t=0对应凌晨0点).
(Ⅰ)根据图象,求A,ω,φ,B的值;
(Ⅱ)由于当地冬季雾霾严重,从环保的角度,既要控制火力发电厂的排放量,电力供应有限;又要控制企业的排放量,于是需要对各企业实行分时拉闸限电措施.已知该企业某日前半日能分配到的供电量g(t)(万千瓦时)与时间t(小时)的关系可用线性函数模型g(t)=-2t+25(0≤t≤12)模拟.当供电量小于该企业的用电量时,企业就必须停产.初步预计停产时间在中午11点到12点间,为保证该企业既可提前准备应对停产,又可尽量减少停产时间,请从这个初步预计的时间段开始,用二分法帮其估算出精确到15分钟的停产时间段.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.根据已知条件求方程:
(1)求与椭圆$\frac{{x}^{2}}{40}$+$\frac{{y}^{2}}{15}$=1有相同焦点,且离心率$e=\frac{5}{4}$的双曲线的标准方程.
(2)已知椭圆的中心在原点,且过点P(3,2),焦点在x轴上,长轴长是短轴长的3倍,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在函数y=sin|x|、y=|sinx|、y=sin(2x+$\frac{2π}{3}$)、y=tan(2x+$\frac{2π}{3}$)中,最小正周期为π的函数的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案