分析 (1)利用an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2(n-1)}$化简可知$\frac{n+1}{{a}_{n+1}}$+1=2($\frac{n}{{a}_{n}}$+1),进而计算可得结论;
(2)通过(1)裂项可知$\frac{1}{{S}_{n}}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),进而并项相加可知Tn=$\frac{2n}{n+1}$,比较分母即得结论.
解答 证明:(1)∵an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2(n-1)}$,
∴$\frac{n+1}{{a}_{n+1}}$+1=$\frac{n+1}{\frac{(n+1){a}_{n}}{{a}_{n}+2n}}$+1=$\frac{{a}_{n}+2n}{{a}_{n}}$+1=2($\frac{n}{{a}_{n}}$+1),
∴数列{$\frac{n}{{a}_{n}}$+1}为等比数列,
又∵$\frac{1}{{a}_{1}}$+1=2,
∴$\frac{n}{{a}_{n}}$+1=2n,
∴数列{an}的通项公式an=$\frac{n}{-1+{2}^{n}}$;
(2)由(1)可知bn=(2n-1)an=n,
则数列{bn}的前n项和为Sn=$\frac{n(n+1)}{2}$,
∵$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Tn=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=2(1-$\frac{1}{n+1}$)
=$\frac{2n}{n+1}$,
∵an=$\frac{n}{-1+{2}^{n}}$=$\frac{2n}{{2}^{n+1}-2}$,且当n≥2时,n+1≤2n+1-2,
∴an≤Tn.
点评 本题考查数列的通项及前n项和,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{4}{3}$ | C. | 1 | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{2}$,$\frac{1}{2}$] | B. | [-$\frac{1}{2}$,1] | C. | [$\frac{1}{2}$,1] | D. | [-$\frac{1}{2}$,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$或$\frac{\sqrt{6}}{2}$ | B. | $\frac{\sqrt{6}}{2}$或3 | C. | $\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{25}$=1 | C. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | D. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com