| A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 3$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
分析 利用向量的坐标运算性质、模的计算公式、数量积运算性质可得:向量$\overrightarrow{{P}_{1}{P}_{2}}$=(1+sinθ-cosθ,1-cosθ-sinθ),|$\overrightarrow{{P}_{1}{P}_{2}}$|=$\sqrt{4-4cosθ}$,再利用三角函数的单调性与值域即可得出.
解答 解:向量$\overrightarrow{{P}_{1}{P}_{2}}$=(1+sinθ-cosθ,1-cosθ-sinθ),
|$\overrightarrow{{P}_{1}{P}_{2}}$|=$\sqrt{(1+sinθ-cosθ)^{2}+(1-cosθ-sinθ)^{2}}$=$\sqrt{2(1-cosθ)^{2}+2si{n}^{2}θ}$=$\sqrt{4-4cosθ}$≤$2\sqrt{2}$,
当cosθ=-1时取等号.
∴向量$\overrightarrow{{P}_{1}{P}_{2}}$的长度的最大值是2$\sqrt{2}$,
故选:B.
点评 本题考查了向量的坐标运算性质、模的计算公式、数量积运算性质、三角函数基本关系式、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{12}$ | D. | $\frac{1}{24}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 组距 | (10,20] | (20,30] | (30,40] | (40,50] | (50,60] | (60,70] |
| 频数 | 2 | 3 | 4 | 5 | 4 | 2 |
| A. | $\frac{1}{20}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com