精英家教网 > 高中数学 > 题目详情
2.用长为18m的钢条围成一个长方体框架,要求长方形的长与宽之比为2:1,则该长方体的体积最大值为3m3

分析 根据题意知,长方体的所有棱长和是18m,故可设出宽,用宽表示出长和高,将体积表示成宽的函数,用导数来求其最大值即可.

解答 解:设该长方体的宽是x米,由题意知,其长是2x米,高是$\frac{9}{2}$-3x米,(0<x<$\frac{3}{2}$)
则该长方体的体积V(x)=x•2x•($\frac{9}{2}$-3x)=-6x3+9x2
由V′(x)=-18x2+18x=0,得到x=1,
当0<x<1时,V′(x)>0;当1<x<$\frac{3}{2}$时,V′(x)<0,
即体积函数V(x)在x=1处取得极大值V(1)=3,
也是函数V(x)在定义域上的最大值.
所以该长方体体积最大值是3.
故答案为:3.

点评 本小题主要考查长方体的体积及用导数求函数最值等知识,考查化归与转化的数学思想方法,以及推理论证能力和运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知曲线C的参数方程是$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}}$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A、B的极坐标分别为A(2,π)、B(2,$\frac{4π}{3}$).
(1)求直线AB的直角坐标方程;
(2)设M为曲线C上的动点,求点M到直线AB距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知c>0.设命题p:函数y=cx为减函数;命题q:当x∈[$\frac{1}{2}$,2]时,函数f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$恒成立.如果p∨q为真命题,(¬p)∨(¬q)也为真命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{O{P}_{1}}$=(cosθ,sinθ),$\overrightarrow{O{P}_{2}}$=(1+sinθ,1-cosθ)(O为原点,θ∈R),则向量$\overrightarrow{{P}_{1}{P}_{2}}$的长度的最大值是(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.3$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}满足an+1-an=2,a1=2.
(1)求数列{an}的通项公式;
(2)等比数列{bn}满足b1=a1,b4=a8,求{bn}的前n项和Sn
(3)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知角α的终边经过点P(4,3),则cosα的值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在公务员招聘中,既有笔试又有面试,某单位在2015年公务员考试中随机抽取100名考生的笔试成绩,按成绩分为5组[50,60),[60,70),[70,80),[80,90),[90,100],得到的频率分布直方图如图所示.
(1)求a值及这100名考生的平均成绩;
(2)若该单位决定在成绩较高的第三、四、五组中按分层抽样抽取6名考生进入第二轮面试,现从这6名考生中抽取3名考生接受单位领导面试,设第四组中恰有1名考生接受领导面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$…,则2$\sqrt{5}$是这个数列的(  )
A.第6项B.第7项C.第11项D.第19项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求值:tan405°-sin450°+cos750°.

查看答案和解析>>

同步练习册答案