精英家教网 > 高中数学 > 题目详情
9.对于定义在D上函数y=f(x),若存在x0∈D,对任意的x∈D,都有f(x)≥f(x0),则称函数f(x)在区间D上有下界,把f(x0)称为函数f(x)在D上的“下界”,若函数f(x)在区间D上既有“上界”又有“下界”,则称函数f(x)是区间D上的“有界函数”,把“上界”减去“下界”的差称为函数f(x)在D上的“幅度M”,对于实数a,试探究函数F(x)=x|x-2a|+3(a≤$\frac{1}{2}$)是不是[1,2]上的“有界函数”?如果是,求出“幅度M”的值.

分析 求出F(x)的分段函数式,讨论①当a≤0时,②当0<a≤$\frac{1}{2}$时,函数的解析式和对称轴,与区间的关系,由单调性即可得到最值和幅度M的值.

解答 解:F(x)=x|x-2a|+3=$\left\{\begin{array}{l}{-{x}^{2}+2ax+3,x≤2a}\\{{x}^{2}-2ax+3,x>2a}\end{array}\right.$,
①当a≤0时,F(x)=x2-2ax+3对称轴为x=a,在[1,2]递增,
F(x)max=F(2)=7-4a,F(x)min=F(1)=4-2a,
幅度M=F(2)-F(1)=3-2a;
②当0<a≤$\frac{1}{2}$时,F(x)=x2-2ax+3,
区间[1,2]在对称轴的右边,为增区间,
F(x)max=F(2),F(x)min=F(1),
幅度M=F(2)-F(1)=3-2a.
综上可得是[1,2]上的“有界函数”,
“幅度M”的值为3-2a.

点评 本题考查新定义的理解和应用,考查二次函数的最值的求法,注意单调性的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,满足Sn=2an-2n,求证:数列{an+2}为等比数列并求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.“根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车,血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车.”
某日,L市交警支队在该市  一交通岗前设点对过往的车辆 进行抽查,经过两个小时共查出酒精浓度超标者60名,如图是用酒精测试仪对这60名酒后驾车者血液中酒精浓度进行检测后依所得结果画出的频率分布直方图.

(Ⅰ)求这60名酒后驾车者中属醉酒驾车的人数;(图中每组包括左端点,不包括右端点)
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,求这60名酒后驾车者血液的酒精浓度的平均值;
(Ⅲ)本次行动中,A,B两位先生都被酒精测试仪测得酒精浓度在70mg/100ml(含70)以上,但他俩坚称没喝那么多,是测试仪不准,交警大队队长决定在被酒精测试仪测得酒精浓度在70mg/100ml(含70)以上的人中随机抽出2人抽血检验,求A,B两位先生至少有1人被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若cos(45°-x)=-$\frac{4}{5}$(225°<x<315°),求$\frac{sin2x-2si{n}^{4}x}{1+tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数y=x2+|x-a|+1,(a是实数)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(cos15°,sin15°),$\overrightarrow{b}$=(cos105°,sin105°),则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.-$\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{a}$-$\frac{1}{x}$(a>0,x>0).判断函数f(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某厂生产一种产品,其总成本为c,年产量为q,产品单价为p,三者之间存在关系:c=$\frac{1}{15}$q2+q+100,q=75-3p,问:应确定年产量为多少时,才能达到最大利润?此时,产品单价为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}为等比数列,公比为q,q>0且q≠1,Sn为数列{an}的前n项和,记Tn=$\frac{{a}_{n}}{{S}_{n}}$,则(  )
A.T3>T6B.T3<T6
C.T3=T6D.T3、T6的大小关系与q有关

查看答案和解析>>

同步练习册答案