精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=|x+2|+|x+m|(m<2),若f(x)的最小值为1.
(1)试求实数m的值;
(2)求证:log2(2a+2b)-m≥$\frac{a+b}{2}$.

分析 (1)利用绝对值不等式,结合f(x)的最小值为1.求实数m的值;
(2)利用基本不等式,即可证明结论.

解答 解:(1)f(x)=|x+2|+|x+m|≥|2-m|,
当且仅当(x+2)(x-m)≤0时取等号…(2分)
所以|2-m|=1,…(3分)
因为m<2,
所以解得 m=1…(4分)
证明:(2)∵2a>0,2b>0,
∴2a+2b≥$2\sqrt{{2}^{a+b}}$,
∴log2(2a+2b)-m≥log2($2\sqrt{{2}^{a+b}}$)-1=$\frac{a+b}{2}$.…(5分)

点评 本题主要考查了绝对值不等式的解法,考查了分类讨论思想和转化思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知定义在(0,+∞)上的函数f(x)满足f(x)=f($\frac{1}{x}$),当x∈(0,1]时,f(x)=-lnx,若曲线g(x)=f(x)-2ax在(0,e2](其中e是自然对数的底数)内的图象与x轴有3个交点,则实数a的取值范围为(  )
A.($\frac{1}{4e}$,$\frac{1}{e}$)B.($\frac{1}{4e}$,$\frac{1}{2e}$]C.[$\frac{1}{e^2}$,$\frac{1}{e}$)D.[$\frac{1}{e^2}$,$\frac{1}{2e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某课题组对春晚参加“咻一咻”抢红包活动的同学进行调查,按照使用手机系统不同(安卓系统和IOS系统)分别随机抽取5名同学进行问卷调查,发现他们咻得红包总金额数如表所示:
手机系统
安卓系统(元)253209
IOS系统(元)431897
(1)如果认为“咻”得红包总金额超过6元为“咻得多”,否则为“咻得少”,请判断手机系统与咻得红包总金额的多少是否有关?
(2)要从5名使用安卓系统的同学中随机选出2名参加一项活动,以X表示选中的同学中咻得红包总金额超过6元的人数,求随机变量X的分布列及数学期望E(X).
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
独立性检验统计量${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ln(1+x)-$\frac{{a{x^2}+x}}{{{{(1+x)}^2}}}$.
(Ⅰ)当a≤2时,讨论函数f(x)的单调性;
(Ⅱ)若x>0,求函数g(x)=${(1+\frac{1}{x})^x}{(1+x)^{\frac{1}{x}}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=2x-a,g(x)=xex,若对任意x1∈[0,1]存在x2∈[-1,1],使f(x1)=g(x2)成立,则实数a的取值范围为[2-e,$\frac{1}{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.方程($\frac{1}{3}$)x+x-2=0的解的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.为了研究色盲与性别的关系,调查了1000人,得到了如表的数据,则(  )
合计
正常442514956
色盲38644
合计4805201000
A.99.9%的把握认为色盲与性别有关B.99%的把握认为色盲与性别有关
C.95%的把握认为色盲与性别有关D.90%的把握认为色盲与性别有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为考察高中生的性别与喜欢数学课程之间的关系,运用2×2列联表进行检验,经计算K2=7.069,参考下表,则认为“性别与喜欢数学有关”犯错误的概率不超过(  )
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
A.0.1%B.1%C.99%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若一个球内切于一个圆柱,则该圆柱的底面半径R与母线l的关系是(  )
A.R=lB.l=2RC.l=$\frac{1}{2}$RD.l与R没有关系

查看答案和解析>>

同步练习册答案