精英家教网 > 高中数学 > 题目详情
9.若函数f(x)满足f(2x-1)=x+1,则f(3)等于3.

分析 直接利用函数的解析式求解即可.

解答 解:函数f(x)满足f(2x-1)=x+1,则f(3)=f(2×2-1)=2+1=3.
故答案为:3.

点评 本题考查函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.下列命题:
①偶函数的图象一定与y轴相交;  
 ②定义在R上的奇函数f(x)必满足f(0)=0;
③f(x)=(2x+1)2-2(2x-1)既不是奇函数又不是偶函数;
④f(x)=$\frac{1}{x}$在(-∞,0)∪(0,+∞)上是减函数.其中真命题的序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$\overrightarrow{a}$=(x,0),$\overrightarrow{b}$=(1,y),且($\overrightarrow{a}$+$\sqrt{3}$$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow{b}$).
(1)求点P(x,y)的轨迹C的方程;
(2)若直线y=kx+m(k≠0)与曲线C交于A,B两点,D(0,-1),且|AD|=|DB|,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知程序框图如图,若a=0.62,b=30.5,c=log0.55,则输出的数是(  )
A.aB.bC.cD.d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=2sin(2x+\frac{π}{4})$,x∈R
(1)写出函数f(x)的最小正周期、对称轴方程及单调区间;
(2)求函数f(x)在区间$[{0,\frac{π}{2}}]$上的最值及取最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知偶函数f(x)在[0,+∞)上单调递减,f(2)=0,对于满足f(k-1)>0的任意k值,则使得函数g(x)=|x-2|-kx+1有两个不相同的零点的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=ax2+bx+3a+b的图象关于y轴对称,且其定义域为[a-1,2a](a,b∈R),则函数f(x)的单调减区间为[$-\frac{2}{3}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则2$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{b}$方向上的投影为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$=(1,1),$\frac{{\overrightarrow{BA}}}{{|{\overrightarrow{BA}}|}}$+$\frac{{\overrightarrow{BC}}}{{|{\overrightarrow{BC}}|}$=$\frac{{\sqrt{3}\overrightarrow{BD}}}{{\overrightarrow{|{BD}|}}}$,则四边形ABCD的面积为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.2D.1

查看答案和解析>>

同步练习册答案